首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In indigenous arctic reindeer and ptarmigan, circadian rhythms are not expressed during the constant light of summer or constant dark of winter, and it has been hypothesized that a seasonal absence of circadian rhythms is common to all vertebrate residents of polar regions. Here, we show that, while free-living arctic ground squirrels do not express circadian rhythms during the heterothermic and pre-emergent euthermic intervals of hibernation, they display entrained daily rhythms of body temperature (T(b)) throughout their active season, which includes six weeks of constant sun. In winter, ground squirrels are arrhythmic and regulate core body temperatures to within ±0.2°C for up to 18 days during steady-state torpor. In spring, after the use of torpor ends, male but not female ground squirrels, resume euthermic levels of T(b) in their dark burrows but remain arrhythmic for up to 27 days. However, once activity on the surface begins, both sexes exhibit robust 24 h cycles of body temperature. We suggest that persistence of nycthemeral rhythms through the polar summer enables ground squirrels to minimize thermoregulatory costs. However, the environmental cues (zeitgebers) used to entrain rhythms during the constant light of the arctic summer in these semi-fossorial rodents are unknown.  相似文献   

2.
We investigated circadian and homeostatic regulation of nonrapid eye movement (NREM) sleep in golden-mantled ground squirrels during euthermic intervals between torpor bouts. Slow-wave activity (SWA; 1-4 Hz) and sigma activity (10-15 Hz) represent the two dominant electroencephalographic (EEG) frequency components of NREM sleep. EEG sigma activity has a strong circadian component in addition to a sleep homeostatic component, whereas SWA mainly reflects sleep homeostasis [Dijk DJ and Czeisler CA. J Neurosci 15: 3526-3538, 1995; Dijk DJ, Shanahan TL, Duffy JF, Ronda JM, and Czeisler CA. J Physiol (Lond) 505: 851-858, 1997]. Animals maintained under constant conditions continued to display circadian rhythms in both sigma activity and brain temperature throughout euthermic intervals, whereas sleep and wakefulness showed no circadian organization. Instead, sleep and wakefulness were distributed according to a 6-h ultradian rhythm. SWA, NREM sleep bout length, and sigma activity responded homeostatically to the ultradian sleep-wake pattern. We suggest that the loss of sleep-wake consolidation in ground squirrels during the hibernation season may be related to the greatly decreased locomotor activity during the hibernation season and may be necessary for maintenance of multiday torpor bouts characteristic of hibernating species.  相似文献   

3.
We undertook a study to determine presence of circadian rhythms during woodchuck hibernation using continuously monitored body temperatures. Males had shorter torpor and longer euthermic periods than females. Circular statistics revealed a significant mean vector for males entering into torpor (10:21 h), but not for females. No significant mean vector was found for male or female arousal from torpor. A contingency test was applied to the torpor bout durations. All 7 males tested had significant τ’s between 24 and 26 h, while 6 of the 13 females tested had significant τ’s with a range of 22–27 h. These results implicate a free-running circadian clock during torpor bouts. Overall, the data support the existence of biological rhythms during hibernation in woodchucks, especially for males during arousals. Since entries into torpor appear to be synchronized for males, arousal periods may be used to resynchronize their circadian system. The persistence of biological rhythms during hibernation may help to insure successful mating in the spring after emergence.  相似文献   

4.
In some hibernating species, an extended euthermic period before spring emergence has been reported during which testicular maturation occurred. In this study, we investigated whether male European ground squirrels Spermophilus citellus (Linnaeus, 1766) develop scrotal testes before or after the termination of hibernation. The course of testis development and testosterone concentrations were examined in young-of-year male ground squirrels (n = 4) before, during, and after their first hibernation. In the environmental chamber, all animals showed regular hibernation patterns with decreasing torpor bout lengths prior to the end of hibernation. Four weeks before hibernation ended, testosterone levels were elevated during spontaneous arousals. Testosterone concentrations peaked during the first 2 months post heterothermy and decreased thereafter. In 2 experimental males, testes descended from the inguinal region into the scrotum shortly before the end of heterothermy. The state of testis development and testosterone secretion corresponded to that found in semi-free-living males at spring emergence. Testis size increased in active animals to maximum widths during weeks 3 and 4 post heterothermy. Scrotal skin pigmentation was absent until heterothermy ended and developed during the first month thereafter. The data suggest that male S. citellus do not need a pre-emergence euthermic period for reproductive development.  相似文献   

5.
P. J. Young 《Oecologia》1990,83(4):504-511
Summary The patterns of torpor and euthermy during hibernation was documented for 28 free-ranging Columbian ground squirrels (Spermophilus columbianus) fitted with temperature-sensitive radio transmitter collars. Adult males began hibernation earlier, were euthermic for a greater proportion of the hibernating season and emerged earlier than other age and sex classes. The patterns of hibernation of adult females did not differ significantly from those of juveniles. Emergence from the hibernaculum was preceded by a long (3–12 d) euthermic interval in adult males but not in adult females or juveniles. Changes in soil temperature did not appear to initiate emergence. The greater time spent euthermic by adult males is interpreted as a significantly greater energy cost of hibernation for adult males than for other age and sex classes. The benefits offsetting these costs may be increased reproductive potential in spring and avoidance of predation in late summer.  相似文献   

6.
European ground squirrels (Spermophilus citellus) in outside enclosures show suppressed circadian rhythmicity in body temperature patterns during the first days of euthermia after hibernation. This may reflect either gradual reappearance of circadian rhythmicity following suppressed functioning of the circadian system during hibernation, or it may reflect transient days during re-entrainment of the circadian system which, during hibernation, has drifted out of phase with the environmental light-dark cycle. Here we report that animals kept under continuous dim light conditions also showed absence of circadian rhythmicity in activity and body temperature in the first 5-15 days after hibernation. After post-hibernation arrhythmicity, spontaneous circadian rhythms re-appeared gradually and increased daily body temperature range. Numbers of arginine-vasopressin immunoreactive neurons in the suprachiasmatic nuclei correlated positively with individual circadian rhythmicity and increased gradually over time after hibernation. Furthermore, circadian rhythmicity was enhanced rather than suppressed after exposure to a light-dark cycle but not after a single 1-h light pulse (1,700 lux). The results support the view that the functioning of the circadian system in the European ground squirrel is suppressed during hibernation at low temperatures and that it requires several days of euthermia to resume its summer function.  相似文献   

7.
During hibernation animals oscillate from near ambient (T(a)) to euthermic body temperatures (T(b)). As animals arouse, the rate of rewarming (RRW) might be expected to simply increase as a function of time. We monitored the T(b) of golden-mantled ground squirrels (Spermophilus lateralis) housed at 4, 8, 12, and 16 degrees C during natural arousals. The maximum RRW, the time required to reach a maximum RRW, and the relative time index all demonstrated negative relationships with T(a). The T(b) corresponding to maximal RRW demonstrated a positive relationship with T(a). Squirrels reached maximal RRW when they had generated 30 to 40% of the heat required to reach a euthermic T(b). These data suggest that arousal is more constrained than expected and that both time and temperature influence the RRW.  相似文献   

8.
Significant progress has been made in our understanding of the neurogenetics of circadian clocks in fruit flies Drosophila melanogaster. Several pacemaker neurons and clock genes have now been identified and their roles in the cellular and molecular clockwork established. Some recent findings suggest that the basic architecture of the clock is multi-oscillatory; the clock mechanisms in the ventral lateral neurons (LN(v)s) of the fly brain govern locomotor activity and adult emergence rhythms, while the peripheral oscillators located in antennal cells regulate olfactory rhythm. Among circadian phenomena exhibited by Drosophila, the egg-laying rhythm is unique in many ways: (i) this rhythm persists under constant light (LL), while locomotor activity and adult emergence become arrhythmic, (ii) its circadian periodicity is much longer than 24h, and (iii) while egg-laying is rhythmic under constant darkness, the expression of two core clock genes period (per) and timeless (tim), is non-oscillatory in the ovaries. In this paper, we review our current knowledge of the circadian regulation of egg-laying behavior in Drosophila, and provide some possible explanations for its self-sustained nature. We conclude by discussing the existing limitations in our understanding of the regulatory mechanisms and propose few approaches to address them.  相似文献   

9.
A genetic approach was used to investigate whether the emergence of circadian rhythms in murine pups is dependent on a functional maternal clock. Arrhythmic females bearing either the mPer1Brdm1/Per2Brdm1 or mPer2Brdm1/Cry1-/- double-mutant genotype were crossed with wild-type males under constant darkness. The heterozygous offspring have the genetic constitution for a functional circadian clock. Individual pups born to arrhythmic mPer1Brdm1/Per2Brdm1 and mPer2Brdm1/Cry1-/- mothers in constant darkness without external zeitgeber developed normal circadian rhythms, but their clocks were less synchronized to each other compared to wild-type animals. These findings indicate that development of circadian rhythms does not depend on a functional circadian clock in maternal tissue, extending previous findings obtained from pups born to SCN-lesioned mothers.  相似文献   

10.
The criptochrome genes (Cry1 and Cry2) are involved in the molecular mechanism that controls the circadian clock, and mice lacking these genes (Cry1(-/-)/Cry2(-/-)) are behaviorally arrhythmic. It has been speculated that the circadian clock modulates the characteristics of thermoregulation, resulting in body temperature (T(b)) rhythm. However, there is no direct evidence proving this speculation. We show here that T(b) and heat production in Cry1(-/-)/Cry2(-/-) mice are arrhythmic under constant darkness. In contrast, both rhythms occur under a light-dark cycle and/or periodical food restriction linked with spontaneous activity and/or eating, although they are not robust as those in wild-type mice. The relationship between heat production and T(b) in Cry1(-/-)/Cry2(-/-) mice is linear and identical under any conditions, indicating that their T(b) rhythm is determined by heat production rhythm associated with activity and eating. However, T(b) in wild-type mice is maintained at a relatively higher level in the active phase than the inactive phase regardless of the heat production level. These results indicate that the thermoregulatory responses are modulated according to the circadian phase, and the Cry genes are involved in this mechanism.  相似文献   

11.
Precise measures of phenology are critical to understanding how animals organize their annual cycles and how individuals and populations respond to climate-induced changes in physical and ecological stressors. We show that patterns of core body temperature (T b) can be used to precisely determine the timing of key seasonal events including hibernation, mating and parturition, and immergence and emergence from the hibernacula in free-living arctic ground squirrels (Urocitellus parryii). Using temperature loggers that recorded T b every 20 min for up to 18 months, we monitored core T b from three females that subsequently gave birth in captivity and from 66 female and 57 male ground squirrels free-living in the northern foothills of the Brooks Range Alaska. In addition, dates of emergence from hibernation were visually confirmed for four free-living male squirrels. Average T b in captive females decreased by 0.5–1.0°C during gestation and abruptly increased by 1–1.5°C on the day of parturition. In free-living females, similar shifts in T b were observed in 78% (n = 9) of yearlings and 94% (n = 31) of adults; females without the shift are assumed not to have given birth. Three of four ground squirrels for which dates of emergence from hibernation were visually confirmed did not exhibit obvious diurnal rhythms in T b until they first emerged onto the surface when T b patterns became diurnal. In free-living males undergoing reproductive maturation, this pre-emergence euthermic interval averaged 20.4 days (n = 56). T b-loggers represent a cost-effective and logistically feasible method to precisely investigate the phenology of reproduction and hibernation in ground squirrels.  相似文献   

12.
Ninety male Sprague-Dawley rats were exposed to 1:1-h light-dark (LD1:1) cycles for 50-90 days, and then they were released into constant darkness (DD). During LD1:1 cycles, behavioral rhythms were gradually disintegrated, and circadian rhythms of locomotor activity, drinking, and urine 6-sulfatoxymelatonin excretion were eventually abolished. After release into DD, 44 (49%) rats showed arrhythmic behavior for >10 days. Seven (8%) animals that remained arrhythmic for >50 days in DD were exposed to brief light pulses or 12:12-h light-dark cycles, and then they restored their circadian rhythms. These results indicate that the circadian clock was stopped, at least functionally, by LD1:1 cycles and was restarted by subsequent light stimulation.  相似文献   

13.
Summary Finches (Chloris chloris, Fringilla montifringilla) showed clear freerunning circadian rhythms when exposed to constant dim light. Increasing the light intensity by doubling it each day made them become arrhythmic at a certain threshold intensity of illumination, showing continuous locomotor activity. When the light intensity was decreased steadily at the reversed rate, the finches became rhythmic again. 7 out of 8 finches had a clear start in their rhythms, from one day to the next, at light intensities about 4 times higher than the point where they had become arrhythmic. The last finch started its freerunning circadian rhythm gradually, a few days after the light intensity had reached a constant dim illumination (0.2 lux).The results of all birds are taken as proof of the self-excitatory capacity of the circadian system. This means, it characterizes the dynamics of the system that the clock mechanism is continuously in operation, and not only after a passive reaction to external stimuli exceeds any threshold. Simultaneously, the results of all but one bird allow the evaluation of the contribution of proportional and differential effects of light in the control of circadian rhythmicity. A relative change in light intensity by 100% in the course of one day is nearly equivalent to a change of 100% in the absolute intensity of illumination.  相似文献   

14.
Gail R. Michener 《Oecologia》1992,89(3):397-406
Summary Over-winter torpor patterns of Richardson's ground squirrels hibernating in southern Alberta were monitored with temperature-sensitive radiocollars to determine if these patterns differed between males and females in a manner related to the greater costs of mating effort by males than females. The hibernation season (from immergence to emergence) was composed of three periods: post-immergence euthermy, heterothermy, and pre-emergence euthermy. The hibernation season was shorter for juveniles than adults both among males (< 150 versus 234 days) and females (185 versus 231 days), a reflection of the later immergence into hibernation by juveniles. However, regardless of the absolute duration of hibernation, heterothermy accounted for a smaller proportion of the hibernation season of males (93±5%) than females (98±1%) and, within the heterothermal period, males had shorter torpor bouts and longer inter-torpor arousals. Overall, males spent a smaller proportion of the hibernation season in torpor (85±6%) than females (92±1%). This sexual difference was largely attributable to the longer duration of preemergence euthermy for males than females. Males terminated torpor in January and February, when hibernacula were at their coldest, then remained euthermic for 8.8 days (range 0.5–25.0 days) before emergence. In contrast, females terminated torpor in March, when hibernaculum temperatures were increasing, then remained euthermic for only 1.1 days (range 0.5–2.0 days) before emergence. Males lost less mass per euthermic day during hibernation than females (7.0 versus 9.3 g/day). Males and females hibernated at similar depths (56 cm), but males had larger chambers than females (18 versus 16 cm3/g). Many males, but no females, cached seeds in the hibernaculum. Males met the costs of thermogenesis and euthermy from a combination of fat reserves and food caches, whereas females relied solely on fat. Access to food caches permitted males to terminate torpor several weeks in advance of emergence, during which time they recouped mass and developed sperm in preparation for the forthcoming mating season.  相似文献   

15.
Akt (or protein kinase B) plays a central role in coordinating growth, survival and anti-apoptotic responses in cells and we hypothesized that changes in Akt activity and properties would aid the reprioritization of metabolic functions that occurs during mammalian hibernation. Akt was analyzed in skeletal muscle and liver of Richardson's ground squirrels, Spermophilus richardsonii, comparing the enzyme from euthermic and hibernating states. Akt activity, measured with a synthetic peptide substrate, decreased by 60-65% in both organs during hibernation. Western blotting showed that total Akt protein did not change in hibernation but active, phosphorylated Akt (Ser 473) was reduced by 40% in muscle compared with euthermic controls and was almost undetectable in liver. Kinetic analysis of muscle Akt showed that S(0.5) values for Akt peptide were 28% lower during hibernation, compared with the euthermic enzyme, whereas S(0.5) ATP increased by 330%. Assay at 10 degrees C also elevated S(0.5) ATP of euthermic Akt by 350%. Changes in ATP affinity would limit Akt function in the hibernator since the muscle adenylate pool size is also strongly suppressed during cold torpor. Other parameters of euthermic and hibernator Akt were the same including activation energy calculated from Arrhenius plots and sensitivity to urea denaturation. DEAE Sephadex chromatography of muscle extracts revealed three peaks of Akt activity in euthermia but only two during hibernation suggesting isozymes are differentially dephosphorylated during torpor. Altered enzyme properties and suppression of Akt activity would contribute to the coordinated suppression of energy-expensive anabolic and growth processes that is needed to maintain viability during over weeks of winter torpor.  相似文献   

16.
Circadian rhythms are generated by an internal biological clock. The suprachiasmatic nucleus (SCN) in the hypothalamus is known to be the dominant biological clock regulating circadian rhythms in mammals. In birds, two nuclei, the so-called medial SCN (mSCN) and the visual SCN (vSCN), have both been proposed to be the avian SCN. However, it remains an unsettled question which nuclei are homologous to the mammalian SCN. We have identified circadian clock genes in Japanese quail and demonstrated that these genes are expressed in known circadian oscillators, the pineal and the retina. Here, we report that these clock genes are expressed in the mSCN but not in the vSCN in Japanese quail, Java sparrow, chicken, and pigeon. In addition, mSCN lesions eliminated or disorganized circadian rhythms of locomotor activity under constant dim light, but did not eliminate entrainment under light-dark (LD) cycles in pigeon. However, the lesioned birds became completely arrhythmic even under LD after the pineal and the eye were removed. These results indicate that the mSCN is a circadian oscillator in birds.  相似文献   

17.
季节、环境温度与黄鼠冬眠的关系   总被引:4,自引:0,他引:4  
金宗濂  蔡益鹏 《生态学报》1987,7(2):185-192
观察了达乌尔黄鼠在实验室内冬眠的一般情况。常温黄鼠的体温有着规律性的年周期,与环境温度的年周期变动不完全呈依从关系。出眠初期(4月下旬),动物体温高而稳定。4月至6月常温黄鼠的平均体温(皮温)为35.6℃,波动菹围32—37.5℃。随着体重达到顶峰,体温逐渐降低。8月份部分黄鼠出现低于32℃的低常体温,表明部分黄鼠自8月盛夏开始冬眠。但就整个种群而言,北京地区实验室内黄鼠冬眠季自9月下半月开始。3月底止,共6.5个月。秋季室温下降,动物入眠趋势增长。浅低体温(31.9—15℃)的比数逐渐升高。9月至12月,低体温(低于31.9℃)的百分比从47%增至84.8%,反映了动物从浅冬眠向深冬眠过渡。1月至2月份,低体温占85%以上,深低体温(低于15℃)占绝对优势。标志着动物种群的深眠月份。秋季动物从常温期向冬眠期转化的界线是不清的,而春季从冬眠期向常温相转化的界限却比较明显。  相似文献   

18.
In vivo monitoring of peripheral circadian clocks in the mouse   总被引:1,自引:0,他引:1  
The mammalian circadian system is comprised of a central clock in the suprachiasmatic nucleus (SCN) and a network of peripheral oscillators located in all of the major organ systems. The SCN is traditionally thought to be positioned at the top of the hierarchy, with SCN lesions resulting in an arrhythmic organism. However, recent work has demonstrated that the SCN and peripheral tissues generate independent circadian oscillations in Per1 clock gene expression in vitro. In the present study, we sought to clarify the role of the SCN in the intact system by recording rhythms in clock gene expression in vivo. A practical imaging protocol was developed that enables us to measure circadian rhythms easily, noninvasively, and longitudinally in individual mice. Circadian oscillations were detected in the kidney, liver, and submandibular gland studied in about half of the SCN-lesioned, behaviorally arrhythmic mice. However, their amplitude was decreased in these organs. Free-running periods of peripheral clocks were identical to those of activity rhythms recorded before the SCN lesion. Thus, we can report for the first time that many of the fundamental properties of circadian oscillations in peripheral clocks in vivo are maintained in the absence of SCN control.  相似文献   

19.
Hibernation is a strategy of reducing energy expenditure, body temperature (T(b)) and activity used by endotherms to escape unpredictable or seasonally reduced food availability. Despite extensive research on thermoregulatory adjustments during hibernation, less is known about transitions in thermoregulatory state, particularly under natural conditions. Laboratory studies on hibernating ground squirrels have demonstrated that thermoregulatory adjustments may occur over short intervals when animals undergo several brief, preliminary torpor bouts prior to entering multiday torpor. These short torpor bouts have been suggested to reflect a resetting of hypothalamic regions that control T(b) or to precondition animals before they undergo deep, multiday torpor. Here, we examined continuous records of T(b) in 240 arctic ground squirrels (Urocitellus parryii) prior to hibernation in the wild and in captivity. In free-living squirrels, T(b) began to decline 45 days prior to hibernation, and average T(b) had decreased 4.28 °C at the onset of torpor. Further, we found that 75 % of free-living squirrels and 35 % of captive squirrels entered bouts of multiday torpor with a single T(b) decline and without previously showing short preliminary bouts. This study provides evidence that adjustments in the thermoregulatory component of hibernation begin far earlier than previously demonstrated. The gradual reduction in T(b) is likely a component of the suite of metabolic and behavioral adjustments, controlled by an endogenous, circannual rhythm, that vary seasonally in hibernating ground squirrels.  相似文献   

20.
In hibernation season during torpor bouts, the spleen weight and the hemoglobin level, as well as the total and extracted protein contents in the spleen of the ground squirrel Spermophilus undulatus are increased when animals enter torpor and reach maximum values when the body temperature drops below 25°C. All these parameters return to the characteristic values of the euthermic animals during arousal, before the body temperature increases to 20°C. There were no significant differences in the numbers of splenocytes between ground squirrels in interbout euthermia and torpor. The minimum number of splenocytes was observed in animals that entered torpor when the core body temperature was approximately 18°C. The activity of ornithine decarboxylase, a key enzyme in polyamine synthesis, which is correlated with the functional and proliferative status of lymphoid tissue, was the same for the euthermic and summer ground squirrels and decreased monotonically during torpor. Upon arousal of the animals when body temperature was below 29°C, no resumption of the spleen ornithine decarboxylase activity was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号