首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron is an essential element for nearly all organisms, and under anoxic and/or reducing conditions, Fe2+ is the dominant form of iron available to bacteria. The ferrous iron transport (Feo) system is the primary prokaryotic Fe2+ import machinery, and two constituent proteins (FeoA and FeoB) are conserved across most bacterial species. However, how FeoA and FeoB function relative to one another remains enigmatic. In this work, we explored the distribution of feoAB operons encoding a fusion of FeoA tethered to the N-terminal, G-protein domain of FeoB via a connecting linker region. We hypothesized that this fusion poises FeoA to interact with FeoB to affect function. To test this hypothesis, we characterized the soluble NFeoAB fusion protein from Bacteroides fragilis, a commensal organism implicated in drug-resistant infections. Using X-ray crystallography, we determined the 1.50-Å resolution structure of BfFeoA, which adopts an SH3-like fold implicated in protein–protein interactions. Using a combination of structural modeling, small-angle X-ray scattering, and hydrogen–deuterium exchange mass spectrometry, we show that FeoA and NFeoB interact in a nucleotide-dependent manner, and we mapped the protein–protein interaction interface. Finally, using guanosine triphosphate (GTP) hydrolysis assays, we demonstrate that BfNFeoAB exhibits one of the slowest known rates of Feo-mediated GTP hydrolysis that is not potassium-stimulated. Importantly, truncation of FeoA from this fusion demonstrates that FeoA–NFeoB interactions function to stabilize the GTP-bound form of FeoB. Taken together, our work reveals a role for FeoA function in the fused FeoAB system and suggests a function for FeoA among prokaryotes.  相似文献   

2.
Among strains of Campylobacter jejuni, levels of ferrous iron (Fe2+) uptake was comparable. However, C. jejuni showed a lower level of ferrous iron uptake than Escherichia coli. Consistent with studies of E. coli, Fe2+ uptake in C. jejuni was significantly enhanced by low Mg2+ concentration. The C. jejuni genome sequence contains a single known ferrous iron uptake gene, feoB, whose product shares 50% amino acid identity to Helicobacter pylori FeoB and 29% identity to E. coli FeoB. However, Fe2+ uptake could not be attributed to FeoB for several reasons. Site-directed mutations in feoB caused no defect in 55Fe2+ uptake. Among C. jejuni strains, various nucleotide alterations were found in feoB, indicating that some C. jejuni feoB genes are defective. In addition, uptake could not be attributed to the magnesium transporter CorA, since no reduction in 55Fe2+ uptake was observed in the presence of a CorA-specific inhibitor.  相似文献   

3.
4.
The genome sequence of Helicobacter pylori suggests that this bacterium possesses several Fe acquisition systems, including both Fe2+- and Fe3+-citrate transporters. The role of these transporters was investigated by generating insertion mutants in feoB, tonB, fecA1 and fecDE. Fe transport in the feoB mutant was approximately 10-fold lower than in the wild type (with 0.5 microM Fe), irrespective of whether Fe was supplied in the Fe2+ or Fe3+ form. In contrast, transport rates were unaffected by the other mutations. Complementation of the feoB mutation fully restored both Fe2+ and Fe3+ transport. The growth inhibition exhibited by the feoB mutant in Fe-deficient media was relieved by human holo-transferrin, holo-lactoferrin and Fe3+-dicitrate, but not by FeSO4. The feoB mutant had less cellular Fe and was more sensitive to growth inhibition by transition metals in comparison with the wild type. Biphasic kinetics of Fe2+ transport in the wild type suggested the presence of high- and low-affinity uptake systems. The high-affinity system (apparent Ks = 0.54 microM) is absent in the feoB mutant. Transport via FeoB is highly specific for Fe2+ and was inhibited by FCCP, DCCD and vanadate, indicating an active process energized by ATP. Ferrozine inhibition of Fe2+ and Fe3+ uptake implied the concerted involvement of both an Fe3+ reductase and FeoB in the uptake of Fe supplied as Fe3+. Taken together, the results are consistent with FeoB-mediated Fe2+ uptake being a major pathway for H. pylori Fe acquisition. feoB mutants were unable to colonize the gastric mucosa of mice, indicating that FeoB makes an important contribution to Fe acquisition by H. pylori in the low-pH, low-O2 environment of the stomach.  相似文献   

5.
Prokaryotic pathogens have developed specialized mechanisms for efficient uptake of ferrous iron (Fe2+) from the host. In Legionella pneumophila, the causative agent of Legionnaires’ disease, the transmembrane GTPase FeoB plays a key role in Fe2+ acquisition and virulence. FeoB consists of a membrane-embedded core and an N-terminal, cytosolic region (NFeoB). Here, we report the crystal structure of NFeoB from L. pneumophila, revealing a monomeric protein comprising two separate domains with GTPase and guanine-nucleotide dissociation inhibitor (GDI) functions. The GDI domain displays a novel fold, whereas the overall structure of the GTPase domain resembles that of known G domains but is in the rarely observed nucleotide-free state.  相似文献   

6.
7.
The mammalian prion protein (PrP) is composed of an unstructured flexible N-terminal region and a C-terminal globular domain. We examined the import of PrP into the endoplasmic reticulum (ER) of neuronal cells and show that information present in the C-terminal globular domain is required for ER import of the N terminus. N-terminal fragments of PrP, devoid of structural domains located in the C terminus, remained in the cytosol with an uncleaved signal peptide and were rapidly degraded by the proteasome. Conversely, the separate C-terminal domain of PrP, comprising the highly ordered helix 2-loop-helix 3 motif, was entirely imported into the ER. As a consequence, two PrP mutants linked to inherited prion disease in humans, PrP-W145Stop and PrP-Q160Stop, were partially retained in the cytosol. The cytosolic fraction was characterized by an uncleaved N-terminal signal peptide and was degraded by the proteasome. Our study identified a new regulatory element in the C-terminal globular domain of PrP necessary and sufficient to promote import of PrP into the ER.  相似文献   

8.
The mutants irt1-1 and irt1-2 of Arabidopsis thaliana were identified among a collection of T-DNA-tagged lines on the basis of a decrease in the effective quantum yield of photosystem II. The mutations responsible interfere with expression of IRT1, a nuclear gene that encodes the metal ion transporter IRT1. In irt1 mutants, photosensitivity and chlorophyll fluorescence parameters, as well as abundance and composition of the photosynthetic apparatus, are significantly altered. Additional effects of the mutation under greenhouse conditions, including chlorosis and a drastic reduction in growth rate and fertility, are compatible with a deficiency in iron transport. Propagation of irt1 plants on media supplemented with additional quantities of iron salts restores almost all aspects of wild-type behaviour. The irt2-1 mutant, which carries an En insertion in the highly homologous IRT2 gene of Arabidopsis thaliana, was identified by reverse genetics and shows no symptoms of iron deficiency. This, together with the finding that irt1-1 can be complemented by 35S::IRT1 but not by 35S::IRT2, demonstrates that, although the products of the two genes are closely related, only AtIRT1 is required for iron homeostasis under physiological conditions.  相似文献   

9.
Iron is an important nutrient in N2-fixing legume root nodules. Iron supplied to the nodule is used by the plant for the synthesis of leghemoglobin, while in the bacteroid fraction, it is used as an essential cofactor for the bacterial N2-fixing enzyme, nitrogenase, and iron-containing proteins of the electron transport chain. The supply of iron to the bacteroids requires initial transport across the plant-derived peribacteroid membrane, which physically separates bacteroids from the infected plant cell cytosol. In this study, we have identified Glycine max divalent metal transporter 1 (GmDmt1), a soybean homologue of the NRAMP/Dmt1 family of divalent metal ion transporters. GmDmt1 shows enhanced expression in soybean root nodules and is most highly expressed at the onset of nitrogen fixation in developing nodules. Antibodies raised against a partial fragment of GmDmt1 confirmed its presence on the peribacteroid membrane (PBM) of soybean root nodules. GmDmt1 was able to both rescue growth and enhance 55Fe(II) uptake in the ferrous iron transport deficient yeast strain (fet3fet4). The results indicate that GmDmt1 is a nodule-enhanced transporter capable of ferrous iron transport across the PBM of soybean root nodules. Its role in nodule iron homeostasis to support bacterial nitrogen fixation is discussed.  相似文献   

10.
Ferrous iron (Fe2+) transport is an essential process that supports the growth, intracellular survival, and virulence of several drug-resistant pathogens, and the ferrous iron transport (Feo) system is the most important and widespread protein complex that mediates Fe2+ transport in these organisms. The Feo system canonically comprises three proteins (FeoA/B/C). FeoA and FeoC are both small, accessory proteins localized to the cytoplasm, and their roles in the Fe2+ transport process have been of great debate. FeoB is the only wholly-conserved component of the Feo system and serves as the inner membrane-embedded Fe2+ transporter with a soluble G-protein-like N-terminal domain. In vivo studies have underscored the importance of Feo during infection, emphasizing the need to better understand Feo-mediated Fe2+ uptake, although a paucity of research exists on intact FeoB. To surmount this problem, we designed an overproduction and purification system that can be applied generally to a suite of intact FeoBs from several organisms. Importantly, we noted that FeoB is extremely sensitive to excess salt while in the membrane of a recombinant host, and we designed a workflow to circumvent this issue. We also demonstrated effective protein extraction from the lipid bilayer through small-scale solubilization studies. We then applied this approach to the large-scale purifications of Escherichia coli and Pseudomonas aeruginosa FeoBs to high purity and homogeneity. Lastly, we show that our protocol can be generally applied to various FeoB proteins. Thus, this workflow allows for isolation of suitable quantities of FeoB for future biochemical and biophysical characterization.  相似文献   

11.
The mitochondrial import and assembly of the F1ATPase subunits requires, respectively, the participation of the molecular chaperones hsp70SSA1 and hsp70SSC1 and other components operating on opposite sides of the mitochondrial membrane. In previous studies, both the homology and the assembly properties of the F1ATPase alpha-subunit (ATP1p) compared to the groEL homologue, hsp60, have led to the proposal that this subunit could exhibit chaperone-like activity. In this report the extent to which this subunit participates in protein transport has been determined by comparing import into mitochondria that lack the F1ATPase alpha-subunit (delta ATP1) versus mitochondria that lack the other major catalytic subunit, the F1ATPase beta-subunit (delta ATP2). Yeast mutants lacking the alpha-subunit but not the beta-subunit grow much more slowly than expected on fermentable carbon sources and exhibit delayed kinetics of protein import for several mitochondrial precursors such as the F1 beta subunit, hsp60MIF4 and subunits 4 and 5 of the cytochrome oxidase. In vitro and in vivo the F1 beta-subunit precursor accumulates as a translocation intermediate in absence of the F1 alpha-subunit. In the absence of both the ATPase subunits yeast grows at the same rate as a strain lacking only the beta-subunit, and import of mitochondrial precursors is restored to that of wild type. These data indicate that the F1 alpha-subunit likely functions as an "assembly partner" to influence protein import rather than functioning directly as a chaperone. These data are discussed in light of the relationship between the import and assembly of proteins in mitochondria.  相似文献   

12.
We described previously an assay for authentic nuclear protein import in vitro. In this assay, exogenous nuclei are placed in an extract of Xenopus eggs; a rhodamine-labeled protein possessing a nuclear localization signal is added, and fluorescence microscopy is used to measure nuclear uptake. The requirement in this system for a cytosolic extract suggests that nuclear import is dependent on at least one cytosolic factor. We now confirm this hypothesis. Treatment of the cytosol with N-ethylmaleimide (NEM) abolishes nuclear protein import; readdition of a cytosolic fraction to the NEM-inactivated extract rescues transport. Thus, at least one NEM-sensitive factor required for transport is supplied by the cytosol. This activity, called nuclear import factor-1, or NIF-1, is ammonium-sulfate-precipitable, protease-sensitive, and heat-labile; it is therefore at least partly proteinaceous. NIF-1 stimulates, in a concentration-dependent manner, the rate at which individual nuclei accumulate protein. The effect of NIF-1 is enhanced by a second cytosolic NEM-sensitive factor, NIF-2. Earlier we identified two steps in the nuclear import reaction: (a) ATP-independent binding of a signal-sequence-bearing protein to the nuclear pore; and (b) ATP-dependent translocation of that protein through the pore. We now show that NEM inhibits signal-mediated binding, and that readdition of NIF-1 restores binding. Thus, NIF-1 is required for at least the binding step and does not require ATP for its activity. NIF-1 may act as a cytoplasmic signal receptor that escorts signal-bearing proteins to the pore, or may instead promote signal-mediated binding to the pore in another manner, as discussed.  相似文献   

13.
Based on in vivo Mössbauer spectroscopy it has previously been demonstrated that the intracellular iron pool of Escherichia coli, grown in iron deficient media supplemented with siderophores as the sole iron source, is dominated by a single Fe2+ and a single Fe3+ species. We have isolated the ferrous ion species and have purified it employing native column PAGE, chromatography and ultrafiltration. The purified compound displays an M app of 2.2 kDa and an extremely low isoelectric point (pI) of 1.05. It is shown that this ferrous ion binding compound is neither a protein nor a nucleotide, rather it is composed mainly of phosphorylated sugar derivatives. This compound binds approximately 40% of the cytoplasmic iron. Therefore it is proposed that this oligomeric ferrous carbohydrate phosphate represents the long sought after mobile, low molecular mass iron pool.  相似文献   

14.
15.
The inner ear has fluid-filled compartments of different ionic compositions, including the endolymphatic and perilymphatic spaces of the organ of Corti; the separation from one another by epithelial barriers is required for normal hearing. TRIC encodes tricellulin, a recently discovered tight-junction (TJ) protein that contributes to the structure and function of tricellular contacts of neighboring cells in many epithelial tissues. We show that, in humans, four different recessive mutations of TRIC cause nonsyndromic deafness (DFNB49), a surprisingly limited phenotype, given the widespread tissue distribution of tricellulin in epithelial cells. In the inner ear, tricellulin is concentrated at the tricellular TJs in cochlear and vestibular epithelia, including the structurally complex and extensive junctions between supporting and hair cells. We also demonstrate that there are multiple alternatively spliced isoforms of TRIC in various tissues and that mutations of TRIC associated with hearing loss remove all or most of a conserved region in the cytosolic domain that binds to the cytosolic scaffolding protein ZO-1. A wild-type isoform of tricellulin, which lacks this conserved region, is unaffected by the mutant alleles and is hypothesized to be sufficient for structural and functional integrity of epithelial barriers outside the inner ear.  相似文献   

16.
17.
《Biophysical journal》2022,121(5):715-730
The serotonin transporter (SERT) initiates the reuptake of extracellular serotonin in the synapse to terminate neurotransmission. The cryogenic electron microscopy structures of SERT bound to ibogaine and the physiological substrate serotonin resolved in different states have provided a glimpse of the functional conformations at atomistic resolution. However, the conformational dynamics and structural transitions to intermediate states are not fully understood. Furthermore, the molecular basis of how serotonin is recognized and transported remains unclear. In this study, we performed unbiased microsecond-long simulations of the human SERT to investigate the structural dynamics to various intermediate states and elucidated the complete substrate import pathway. Using Markov state models, we characterized a sequential order of conformational-driven ion-coupled substrate binding and transport events and calculated the free energy barriers of conformation transitions associated with the import mechanism. We find that the transition from the occluded to inward-facing state is the rate-limiting step for substrate import and that the substrate decreases the free energy barriers to achieve the inward-facing state. Our study provides insights on the molecular basis of dynamics-driven ion-substrate recognition and transport of SERT that can serve as a model for other closely related neurotransmitter transporters.  相似文献   

18.
19.
20.
How finicky is mitochondrial protein import?   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号