首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have shown that whole-animal thermal responses of ectotherms and heterotherms (e.g., hibernators), both of which experience a wide range of body temperatures, are related to the saturation level of somatic lipids, which in turn can be influenced by the ratio of saturated and unsaturated fatty acids in the diet. This study demonstrates that Djungarian hamsters held in long days display ambient temperature-dependent choice of dietary fats, increasing their preference for saturated fats when ambient temperature increases (to 27 degrees C) and later reversing this preference when ambient temperature is returned to its original value (8 degrees C). Changes in percent contribution of the unsaturated and saturated diets in response to temperature were accomplished almost solely by changes in the amount of unsaturated diet consumed. Temperature-dependent fatty acid choice occurs at a stage in the annual cycle when Djungarian hamsters do not enter spontaneous daily torpor and therefore experience only small changes in core body temperature. These results suggest that temperature-dependent fatty acid choice may occur in a wide range of animals, including nonheterothermic endotherms.  相似文献   

2.
Summary In Djungarian hamsters the cold-induced thermoregulatory heat production was preceeded and accompanied by an increase in the plasma level of free fatty acids. In warm-acclimated hamsters this increase was found more pronounced (0.85 to 1.48 mM) than in cold-acclimated hamsters (0.64 to 0.88 mM). Noradrenaline-induced thermogenesis at thermoneutrality provoked a similar increase in the free fatty acid level. Inhibition of nonshivering thermogenesis during cold exposure by propranolol abolished the increase in free fatty acids completely. The surgical removal of brown adipose tissue proportionately reduced the increase in free fatty acids. This indicates that the rise in plasma free fatty acids is functionally related to nonshivering thermogenesis and originates from brown adipose tissue.  相似文献   

3.
We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18°C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23°C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18°C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid(s) - MR metabolic rate - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SFA saturated fatty acid(s) - T a air temperature - T b body temperature - Ts body surface temperature(s) - TNZ thermoneutral zone - UFA unsaturated fatty acid(s)  相似文献   

4.
We examined the effect of different dietary supplements on seasonal changes in body mass (mb), metabolic rate (MR) and nonshivering thermogenesis (NST) capacity in normothermic Siberian hamsters housed under semi-natural conditions. Once a week standard hamster food was supplemented with either sunflower and flax seeds, rich in polyunsaturated fatty acids (FA), or mealworms, rich in saturated and monounsaturated FA. We found that neither of these dietary supplements affected the hamsters' normal winter decrease in mb and fat content nor their basal MR or NST capacity. NST capacity of summer-acclimated hamsters was lower than that of winter-acclimated ones. The composition of total body fat reflected the fat composition of the dietary supplements. Resting MR below the lower critical temperature of the hamsters, and their total serum cholesterol concentration were lower in hamsters fed a diet supplemented with mealworms than in hamsters fed a diet supplemented with seeds. These results indicate that in mealworm-fed hamsters energy expenditure in the cold is lower than in animals eating a seed-supplemented diet, and that the degree of FA unsaturation of diet affects energetics of heterotherms, not only during torpor, but also during normothermy.  相似文献   

5.
Uncoupling protein 3 (Ucp3) is located within the mitochondrial inner membrane of brown adipose tissue and skeletal muscle. It is thought to be implicated in lipid metabolism and defense against reactive oxygen species. We previously reported on a mutation in our breeding colony of Djungarian hamsters (Phodopus sungorus) that leads to brown adipose tissue specific lack of Ucp3 expression. In this study we compared wildtype with mutant hamsters on a broad genetic background. Hamsters lacking Ucp3 in brown adipose tissue displayed a reduced cold tolerance due to impaired nonshivering thermogenesis. This phenotype is associated with a global decrease in expression of metabolic genes but not of uncoupling protein 1. These data implicate that Ucp3 is necessary to sustain high metabolic rates in brown adipose tissue.  相似文献   

6.
1. Male and female Djungarian hamsters (Phodopus sungorus) were gonadectomized or sham-operated after 12 weeks of exposure to short photoperiods (10L:14D). Half of the animals were single housed and transferred to a cold environment (7 degrees C) at week 13 of short days and half were transferred to cold at week 21. The time courses of short photoperiod induced seasonal changes in body weight, pelage color stage, and daily torpor were monitored periodically until the experiment was terminated after 34 weeks of short days. 2. The total duration of short photoperiod exposure was of primary importance compared to the duration of cold exposure in regulating seasonal changes in the frequency of daily torpor, body weight and pelage color exhibited by male and female Djungarian hamsters; that is, the change from long to short days was much more effective as a seasonal time cue than was the onset of cold exposure. 3. Gonadectomy did not prevent the occurrence of seasonal torpor in hamsters of either sex, indicating that these cycles are regulated by a time measuring mechanism (seasonal clock) that is largely independent of the gonadal cycle. However, castration did influence certain aspects of the body weight and torpor cycles exhibited by male hamsters. 4. Some castrated animals showed a delay in terminating the torpor season lending further support to the hypothesis that the spontaneous recrudescence of the testes which occurs toward the end of the torpor season may play a role in the termination of torpor in males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
N-3 polyunsaturated fatty acids and estrogens are recognized as protective factors of atherosclerosis, however their interactions on cholesterol metabolism remain unclear. Male and female hamsters were fed for 9 weeks diets containing 12.5% lipids and rich in either alpha-linolenic acid ("linseed" diet) or saturated fatty acids ("butter" diet). Hamsters fed the "linseed" diet exhibited lower plasma concentrations of cholesterol (-29%), total LDL (-35%) and HDL (-17%), glucose (-20%), insulin (-40%) and of the LDL-cholesterol/HDL-cholesterol ratio (-27%) than those fed the "butter" diet. In the liver, cholesterol content was 2.7-fold lower in response to the "linseed" diet, whereas the concentration of HDL receptor (SR-BI) and the activities of HMGCoA reductase and cholesterol 7alpha-hydroxylase were 30 to 50% higher than with the "butter" diet. By contrast, the LDL receptor concentration did not vary with the diet. Females exhibited higher concentration of LDL (+24%), lower concentration of plasma triglycerides (-34%), total VLDL (-46%) and VLDL-cholesterol (-37%) and of biliary phospholipids (-19%). Besides, there was also an interaction between gender and diet: in males fed the "butter" diet, plasma triglycerides and VLDL concentration, were 2 to 4 fold higher than in the other groups. These data suggest that gene and/or metabolic regulations by fatty acids could interact with that of sex hormones and explain why males are more sensitive to dietary fatty acids.  相似文献   

8.
Mice of the TO Swiss strain received diets containing different amounts of saturated or unsaturated fat throughout life. These diets produced characteristic changes in cardiac phospholipid fatty acid composition, but produced no significant differences in fatty acid composition of phospholipids from a crude membrane fraction of brain. When littermates of these animals were exposed to ethanol vapour in an inhalation chamber it was observed that mice which had received a diet high in saturated fat lost the righting reflex at an estimated concentration of ethanol in blood higher than that required for mice receiving a control diet, or a diet rich in polyunsaturated fat. Analysis of the brain membrane fraction from those animals which had received ethanol revealed that mice receiving the highly saturated fat diet now had a significantly greater proportion of saturated fatty acids in brain membrane phospholipids. These results are discussed in relation to the hypothesis that brain membrane lipid composition may influence the behavioural response to ethanol.  相似文献   

9.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

10.
1 Metabolic rates (Vo2), body temperature (Tb), and thermal conductance (C) were first determined in newly captured Maximowiczi's voles (Microtus maximowiczii) and Djungarian hamsters (Phodopus campbelli) from the Inner Mongolian grasslands at a temperature range from 5 to 35 °C.

2 The thermal neutral zone (TNZ) was between 25 and 32.5 °C for Maximowiczi's voles and between 25 and 30 °C for Djungarian hamsters. Mean Tb was 37.0±0.1 °C for voles and 36.2±0.1 °C for hamsters. Minimum thermal conductance was 0.172±0.004 ml O2/g h °C for voles and 0.148±0.003 ml O2/g h °C for hamsters.

3 The mean resting metabolic rate within TNZ was 2.21±0.05 ml O2/g h in voles and 2.01±0.07 ml O2/g h in hamsters. Nonshivering thermogenesis was 5.36±0.30 ml O2/g h for voles and 6.30±0.18 ml O2/g h for hamsters.

4 All these thermal physiological properties are adaptive for each species and are shaped by both macroenvironmental and microenvironmental conditions, food habits, phylogeny and other factors.

Keywords: Basal metabolic rate; Body temperature; Djungarian hamster (Phodopus campbelli); Maximowiczi's vole (Microtus maximowiczii); Nonshivering thermogenesis; Minimum thermal conductance  相似文献   


11.
Our experiments were designed to test the hypotheses that dietary lipids can affect whole-animal physiological processes in a manner concordant with changes in the fluidity of cell membranes. We measured (1) the lipid composition of five tissues, (2) body temperatures selected in a thermal gradient (T(sel)), (3) the body temperature at which the righting reflex was lost (critical thermal minimal [CTMin]), and (4) resting metabolic rate (RMR) at three body temperatures in desert iguanas (Dipsosaurus dorsalis) fed diets enriched with either saturated or unsaturated fatty acids. The composition of lipids in tissues of the lizards generally reflected the lipids in their diets, but the particular classes and ratios of fatty acids varied among sampled organs, indicating the conservative nature of some tissues (e.g., brain) relative to others (e.g., depot fat). Lizards fed the diet enriched with saturated fatty acids selected warmer nighttime body temperatures than did lizards fed a diet enriched with unsaturated fatty acids. This difference is concordant with the hypothesis that the composition of dietary fats influences membrane fluidity and that ectotherms may compensate for such changes in fluidity by selecting different body temperatures. The CTMin of the two treatment groups was indistinguishable. This may reflect the conservatism of some tissues (e.g., brain) irrespective of diet treatment. The RMR of the saturated treatment group nearly doubled between 30 degrees and 40 degrees C. Here, some discrete membrane domains in the lizards fed the saturated diet may have been in a more-ordered phase at 30 degrees C and then transformed to a less-ordered phase at 40 degrees C. In contrast, the RMR of the unsaturated treatment group exhibited temperature independence in metabolic rate from 30 degrees to 40 degrees C. Perhaps the unsaturated diet resulted in membranes that developed a higher degree of disorder (i.e., a certain phase) at a lower temperature than were membranes of lizards fed the saturated diet. Our study demonstrates links between dietary fats and whole-animal physiology; however, the mechanistic basis of these links, and the general knowledge of lipid metabolism in squamate reptiles, remain poorly understood and warrant further study.  相似文献   

12.
In their natural environment, burrowing rodents experience rather fluctuating ambient temperatures and are acutely cold exposed only for short periods outside their burrows. The effect of short daily cold exposure on basal metabolic rate, nonshivering thermogenesis, brown fat thermogenesis, and uncoupling protein mRNA was studied in the Djungarian hamster, Phodopus sungorus. They were kept at 23 degrees C and exposed to 5 degrees C daily either for one 4-h period or twice for 2 h (in 12-h intervals). At the same time control hamsters were kept continuously either at thermoneutrality (23 degrees C) or at 5 degrees C. Two 2-h cold exposures daily were sufficient to increase basal metabolic rate and nonshivering thermogenesis to the same level as continuous cold exposure, whereas one 4-h cold period per day did not result in a significant increase of both parameters. Brown fat thermogenesis (as measured by cytochrome-c oxidase activity and GDP binding to the mitochondrial uncoupling protein) increased to the same extent by both treatments with short daily cold exposure. However, this increase was less than in the chronically cold-exposed hamsters. A similar result was found for uncoupling protein mRNA: both short-term cold-exposed hamsters increased uncoupling protein mRNA levels to a similar extent, but less than after chronic cold treatment. It is concluded that short daily cold exposures are sufficient to cause adaptive increases of the capacity of metabolic heat production as well as brown fat thermogenic properties.  相似文献   

13.
The composition of tissue and membrane fatty acids in ectothermic vertebrates is influenced by both temperature acclimation and diets. If such change in body lipid composition and thermal physiology were linked, a diet-induced change in body lipid composition should result in a change in thermal physiology. We therefore investigated whether the selected body temperature of the agamid lizardAmphibolurus nuchalis (body mass 20 g) is influenced by the lipid composition of dietary fatty acids and whether diet-induced changes in thermal physiology are correlated with changes in body lipid composition. The selected body temperature in two groups of lizards was indistinguishable before dietary treatments. The selected body temperature in lizards after 3 weeks on a diet rich in saturated fatty acids rose by 2.1 °C (photophase) and 3.3 °C (scotophase), whereas the body temperature of lizards on a diet rich in unsaturated fatty acids fell by 1.5 °C (photophase) and 2.0 °C (scotophase). Significant diet-induced differences were observed in the fatty acid composition of depot fat, liver and muscle. These observations suggest that dietary lipids may influence selection of body temperature in ectotherms via alterations of body lipid composition.Abbreviations bm body mass - FA fatty acid(s) - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids - T a air temperature - T b body temperature - UFA unsaturated fatty acids  相似文献   

14.
Branched-chain amino acids, particularly leucine, are thought to activate nutrient sensing pathways in the hypothalamus that regulate food intake and energy homeostasis. In the light of recent controversial findings of leucine’s effect on energy homeostasis further clarification of the metabolic impact of dietary leucine supplementation is required. We examined the pharmacological and dietary effects of leucine on energy metabolism in the Djungarian hamster (Phodopus sungorus), a well-established model for studies of alterations in leptin sensitivity and energy metabolism. We acutely administered leucine into the lateral ventricle (1.1 μg) of hamsters to characterize whether leucine exhibits anorexigenic properties in this species as has been described in other rodents. Next the catabolic effect of dietary administered leucine via supplemented rodent diet (15 % leucine), drinking water (17 g/L leucine) and oral gavages (10 mg/day); as well as the effect of subcutaneously (0.1 and 3 mg/day) and intraperitoneally (0.1, 3 and 6 mg/day) injected leucine which avoids the gastrointestinal-track was analyzed. Centrally administered leucine reduced 24 h food intake (by 32 %) and body weight. Both parameters were also reduced in hamsters with leucine supplemented diet, but this catabolic response was based on a pronounced taste aversion to the leucine-diet. In all other experiments, dietary leucine and peripheral injections of leucine had no effect on food intake, body weight and basal blood glucose levels. Our data suggest that in the Djungarian hamster dietary leucine fails to exhibit catabolic effects that would override the evolutionary conserved adaptations of the species which is critical for its survival.  相似文献   

15.
Recently we found that caffeine ingestion did not enhance either thermal or fat metabolic responses to resting in cold air, despite an increase in plasma epinephrine and free fatty acids. Theophylline, another methylxanthine, has been shown to be effective during exercise but not at rest during cold stress. Therefore we hypothesized that caffeine ingestion before exercise in cold air would have a thermal-metabolic impact by increasing fat metabolism and increasing oxygen consumption. Young adult men (n = 6) who did not normally have caffeine in their diet performed four double-blind trials. Thirty minutes after ingesting placebo (dextrose, 5 mg/kg) or caffeine (5 mg/kg) they either exercised (60 W) or rested for 2 h in 5 degrees C air. Cold increased (P less than 0.05) plasma norepinephrine while both caffeine and exercise increased (P less than 0.05) epinephrine. Serum free fatty acids and glycerol were increased, but there were no differences between rest and exercise or placebo and caffeine. Caffeine had no influence on either respiratory exchange ratio or oxygen consumption either at rest or during exercise. The exercise trials did not significantly warm the body, and they resulted in higher plasma norepinephrine concentrations and lower mean skin temperatures for the first 30 min. The data suggest that skin temperature stimulates plasma norepinephrine while caffeine has little effect. In contrast, caffeine and exercise stimulate plasma epinephrine while cold has minimal effect. Within the limits of this study caffeine gave no thermal or metabolic advantage during a cold stress.  相似文献   

16.
With obesity rates reaching epidemic proportions, more studies concentrated on reducing the risk and treating this epidemic are vital. Redox stress is an important metabolic regulator involved in the pathophysiology of cardiovascular disease, Type 2 diabetes, and obesity. Oxygen and nitrogen-derived free radicals alter glucose and lipid homeostasis in key metabolic tissues, leading to increases in risk of developing metabolic syndrome. Oxidants derived from dietary fat differ in their metabolic regulation, with numerous studies showing benefits from a high omega 3 rich diet compared to the frequently consumed “western diet” rich in saturated fat. Omega 3 (OM3) fatty acids improve lipid profile, lower inflammation, and ameliorate insulin resistance, possibly through maintaining redox homeostasis. This study is based on the hypothesis that altering endogenous antioxidant production and/or increasing OM3 rich diet consumption will improve energy metabolism and maintain insulin sensitivity. We tested the comparative metabolic effects of a diet rich in saturated fat (HFD) and an omega 3-enriched diet (OM3) in the newly developed ‘stress-less’ mice model that overexpresses the endogenous antioxidant catalase. Eight weeks of dietary intervention showed that mice overexpressing endogenous catalase compared to their wild-type controls when fed an OM3 enriched diet, in contrast to HFD, activated GPR120-Nrf2 cross-talk to maintain balanced energy metabolism, normal circadian rhythm, and insulin sensitivity. These findings suggest that redox regulation of GPR120/FFAR4 might be an important target in reducing risk of metabolic syndrome and associated diseases.  相似文献   

17.
The modulation of rat brain microsomal and synaptosomal membrane lipid by diet fat was examined. Brain synaptosomal and microsomal membrane composition was compared for rats fed on diets containing either soya-bean oil (SBO), SBO plus choline, SBO lecithin, sunflower oil (SFO), chow or low-erucic acid rape-seed oil (LER) for 24 days. Cholesterol and phosphatidylcholine levels in both membranes were altered by diet. Diet fat also affected the microsomal content of sphingomyelin. Change in membrane phosphatidylcholine level was related to the relative balance of omega-6, omega-3 and monounsaturated fatty acids within the diets fed. The highest phosphatidylcholine levels appeared in membranes of animals fed on SBO lecithin and the lowest in those fed on LER. Microsomal membrane cholesterol and sphingomyelin content increased by feeding on SBO lecithin. In both synaptosomal and microsomal membranes a highly significant correlation was observed between membrane phosphatidylcholine and cholesterol content. The fatty acyl composition of phospholipids from both membranes also altered with diet and age. Alteration in fatty acid composition was observed in response to dietary levels of omega-6, omega-3 and monounsaturated fatty acids, but the unsaturation index of each phospholipid remained constant for all diet treatments. These changes in lipid composition suggest that dietary fat may be a significant modulator in vivo of the physicobiochemical properties of brain synaptosomal and microsomal membranes.  相似文献   

18.
Conjugated linoleic acids (CLAs) such as rumenic acid (RA) have the potential to alter blood lipid profiles in animals and in humans. In contrast, physiological effects of conjugated α-linolenic acids (CLnAs), which concomitantly are omega-3 and conjugated fatty acids, are still unknown. The aim of this study was to evaluate the potential of CLnA to interfere in early steps of atherosclerosis by altering lipoprotein profiles and fatty streaks in the aortas. F1B hamsters were fed a control or one of the three hypercholesterolemic (HC) diets: HC-control, HC-RA (18:2 cis-9, trans-11) or HC-CLnA (CLnA: equimolar mixture of 18:3 cis-9, trans-11, cis-15 and cis-9, trans-13, cis-15) diet. In low-cholesterol control-fed hamsters, the proportion of high-density lipoprotein cholesterol (HDL-C) was around 45% while in HC-fed hamsters, HDL-C was around 10% and cholesterol was mostly (80%) carried by triglyceride-rich lipoproteins (TRL). Low-density lipoprotein (LDL) triglycerides (TGs) increased by approximately 60% in hamsters fed either HC-RA or HC-CLnA compared with HC-controls but not compared with the low-cholesterol control diet. HDL cholesterol decreased by 24% and 16% in hamsters fed HC-RA and HC-CLnA, respectively. Small dense LDL-cholesterol increased by approximately 60% in hamsters fed HC-RA and HC-CLnA compared with the HC-control group and by more than a 100% compared with hamsters on the control diet. The relative percentage of liver cholesteryl ester content increased by 88% in hamsters fed HC diets compared with the control diet. Significant differences in fatty streaks were observed between control and HC-diet-fed hamsters. However, no significant difference was observed among the HC-diet-fed hamsters. This study shows that animals fed any one of the HC diets developed an adverse lipoprotein profile compared with a normolipidic diet. Also, HC-RA or HC-CLnA diets altered lipoprotein profile compared with animals fed the HC-control diet but had no beneficial effects on atherosclerosis.  相似文献   

19.
Male weanling rats were fed diets containing 20% (w/w) fat differing in fatty acid composition for 24 days. Synaptic plasma membranes were isolated from the brain and the fatty acid composition of phosphatidylethanolamine and phosphatidylcholine was determined. In vitro assays of phosphatidylethanolamine methyl-transferase activity were performed on fresh membrane samples to assess effect of dietary fat on the rate of phosphatidylethanolamine methylation for phosphatidylcholine synthesis via the phosphatidylethanolamine methyltransferase pathway. Dietary level of n-6 and ratio of n-6 to n-3 fatty acids influenced membrane phospholipid fatty acid composition and activity of the lipid-dependent phosphatidylethanolamine methyltransferase pathway. Rats fed a diet rich in n-6 fatty acids produced a high ratio of n-6/n-3 fatty acids in synaptosomal membrane phosphatidylethanolamine, and elevated rates of methylation of phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine methyltransferases, suggesting that the pathway exhibits substrate selectivity for individual species of phosphatidylethanolamine containing long-chain homologues of dietary n-6 and n-3 fatty acids (20:4(n-6), 22:4(n-6), 22:5(n-6) and 22:6(n-3). It may be concluded that diet alters the membrane content of n-6, n-3 and monounsaturated fatty acids, and that change in phosphatidylethanolamine species available for methylation to phosphatidylcholine alters the rate of product synthesis in vivo by the phosphatidylethanolamine methyltransferase pathway.  相似文献   

20.
Djungarian hamsters (Phodopus sungorus) tolerate short-term exposure to ambient temperatures (T as) down to −70°C, but surprisingly, previously appeared to reach maximum sustainable metabolic rate (SusMR) when kept at T as as high as ≥−2°C. We hypothesized that SusMR in Djungarian hamsters may be affected by the degree of prior cold acclimation and temporal patterns of T a changes experienced by the animals, as average T a declines. After cold-acclimation at +5°C for 6 weeks, hamsters reached rates of SusMR that were 35% higher than previously determined and were able to maintain positive energy balances down to T a −9°C. SusMR was unaffected, however, by whether mean cold load was constant or caused by T as cycling between +3°C and as low as −25°C, at hourly intervals. At mean T as between +3 and −3°C hamsters significantly reduced body mass and energy expenditure, but were able to maintain stable body mass at lower T as (−5 to −9°C). These results indicate that prior cold-acclimation profoundly affects SusMR in hamsters and that body mass regulation may play an integral part in maintaining positive energy balance during cold exposure. Because the degree of instantaneous cold load had no effect on SusMR, we hypothesize that limits to energy turnover in Djungarian hamsters are not determined by the capacity to withstand extreme temperatures (i.e., peripheral limits) but are due to central limitation of energy intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号