首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular evidence of the monophyly of the Halteria (Strepsiptera + Diptera) is reviewed. The majority of morphological characters, which have classically been used to establish a Strepsiptera + Coleoptera sister group, are rejected, because they are based on erroneous interpretations of strepsipteran morphology. The scorings of 31 morphological characters, which directly relate to the phylogenetic position of Strepsiptera, are provided, and their distribution and optimization on the molecular + morphological tree is discussed. Of these, 13 characters specifically support the placement of Strepsiptera within the Mecopterida; seven of which are based on the optimization of inapplicable or missing data, and six of which are based on states that can be scored for Strepsiptera. Only a single character (posteromotorism) suggests a sister group relationship with the Coleoptera. The morphological and molecular data are largely congruent, and suggest that the Strepsiptera are sister group to the Diptera.  相似文献   

2.
3.
This investigation was the first cladistic analysis using morphological data of first instar larvae of Strepsiptera. The analysis of representatives of nearly all known families of Strepsiptera supports the division of Strepsiptera into Mengenillidia and Stylopidia. Corioxenidae and Elenchidae are placed at the base of Stylopidia. Halictophagidae is the sister group to Xeninae + Myrmecolacidae + Stylopinae. Xeninae is placed as the sister group to Myrmecolacidae + Stylopinae. Stylopidae are paraphyletic. Thus, Xenidae stat. n. is re-established. A sister-group relationship between Myrmecolacidae and Elenchidae is not supported on characters of first instar larvae.  相似文献   

4.
Urban evolutionary biology is the study of rapid evolutionary change in response to humans and our uses of land to support city dwellers. Because cities are relatively modern additions to the natural world, research on urban evolution tends to focus on microevolutionary change that has happened across a few to many hundreds of generations. These questions still fall under the broad purview of evolutionary ecology. However, the severity, rapidity and replication of environmental changes that drive evolution in this context make it worthy of specific attention. Urban evolution provides the opportunity to study the earliest stages of evolution in a context that is scientifically interesting and societally important. The newness of urban populations and their proximity to natural populations also creates challenges when trying to detect population genetic change. In a From the Cover article in this issue of Molecular Ecology, Mueller et al. use whole genome resequencing data to address some of these challenges while exploring genetic changes associated with urbanization in three replicate urban‐rural burrowing owl (Athene cunicularia) populations. Combining multiple approaches across these sample sites Mueller et al. find evidence for selection on genes whose function is related to synapses, neuron projections, brain connectivity and cognitive function in general. That selection was parallel suggests that phenotypes related to brain processes were probably particularly important for urban adaptation.  相似文献   

5.
6.
We present the largest morphological character set ever compiled for Holometabola. This was made possible through an optimized acquisition of data. Based on our analyses and recently published hypotheses based on molecular data, we discuss higher‐level phylogeny and evolutionary changes. We comment on the information content of different character systems and discuss the role of morphology in the age of phylogenomics. Microcomputer tomography in combination with other techniques proved highly efficient for acquiring and documenting morphological data. Detailed anatomical information (356 characters) is now available for 30 representatives of all holometabolan orders. A combination of traditional and novel techniques complemented each other and rapidly provided reliable data. In addition, our approach facilitates documenting the anatomy of model organisms. Our results show little congruence with studies based on rRNA, but confirm most clades retrieved in a recent study based on nuclear genes: Holometabola excluding Hymenoptera, Coleopterida (= Strepsiptera + Coleoptera), Neuropterida excl. Neuroptera, and Mecoptera. Mecopterida (= Antliophora + Amphiesmenoptera) was retrieved only in Bayesian analyses. All orders except Megaloptera are monophyletic. Problems in the analyses are caused by taxa with numerous autapomorphies and/or inapplicable character states due to the loss of major structures (such as wings). Different factors have contributed to the evolutionary success of various holometabolan lineages. It is likely that good flying performance, the ability to occupy different habitats as larvae and adults, parasitism, liquid feeding, and co‐evolution with flowering plants have played important roles. We argue that even in the “age of phylogenomics”, comparative morphology will still play a vital role. In addition, morphology is essential for reconstructing major evolutionary transformations at the phenotypic level, for testing evolutionary scenarios, and for placing fossil taxa.
© The Willi Hennig Society 2010.  相似文献   

7.
Review of the Order Strepsiptera   总被引:3,自引:0,他引:3  
The morphology, biology and life history of the immature stages, the free-living and the neotenic females (of the suborders Mengenillidia and Stylopidia respectively) and the free-living males of the order Strepsiptera are discussed. Strepsiptera are entomophagous parasitoids and are known to parasitize seven orders and thirty-five families of Insecta. The morphological and physiological changes they cause to the host insect are outlined. The classification of the order is revised; the geographical distribution, phylogenetic system and keys to the families, subfamilies and genera (when possible) are given. As the sexes are dimorphic, separate keys are provided for adult males and neotenic females.  相似文献   

8.
9.
SUMMARY Mutations or environmental factors that result in reversal of conspicuous left–right asymmetries provide an opportunity to study developmental mechanisms. They may also provide insight into evolutionary changes in asymmetry states within and between species. King crabs (family Lithodidae) have a larger right claw and females typically exhibit a dextrally offset abdomen. Nevertheless, I observed a high incidence of left handedness in laboratory reared box crabs ( Lopholithodes foraminatus ) and captured the first known egg-bearing female lithodid to exhibit reversed asymmetry. This provided a unique opportunity to characterize the reversed phenotype and to compare the incidence of reversed asymmetry in the offspring of normal and reversed females. Asymmetry of the chelae became apparent in the first postzoeal stage (glaucothoe) and handedness was maintained through subsequent instars. Females with larger left claws developed reversed abdominal asymmetry by the fourth crab stage. No reversed asymmetry was observed in the mandibles of zoea larvae or juveniles of either handedness. The incidence of reversed asymmetry in glaucothoe reared from one reversed and three normal females was high (between 20% and 30%), and independent of maternity ( P =0.67). Removal of the right cheliped of fourth stage zoeae, and the major cheliped of glaucothoe, did not reverse the direction of asymmetry. Elevated larval rearing temperature also did not affect the frequency of reversed individuals. This lack of evidence for either heritability or induction of handedness is enigmatic. Further investigation of reversed asymmetry in lithodid crabs may provide valuable insights into the development and evolution of bilateral asymmetries.  相似文献   

10.
The origin of new functions is fundamental in understanding evolution, and three processes known as adaptation, preadaptation, and exaptation have been proposed as possible evolutionary pathways leading to the origin of new functions. Here we examine the origin of an acid resistance mechanism in the mammalian gastric pathogen Helicobacter pylori, with reference to these three evolutionary pathways. The mechanism involved is that H. pylori, when exposed to the acidic environment in mammalian stomach, restricts the acute proton entry across its membrane by its increased usage of positively charged amino acids in the inner and outer membrane proteins. The results of our comparative genomic analysis between H. pylori, the two closely related species Helicobacter hepaticus and Campylobacter jejuni, and other relevant proteobacterial species are incompatible with the hypotheses invoking preadaptation or exaptation. The acid resistance mechanism most likely arose by selection favoring an increased usage of positively charged lysine in membrane proteins.  相似文献   

11.
Molecular and morphological evidence on the phylogeny of the Elephantidae   总被引:6,自引:0,他引:6  
The African and Asian elephants and the mammoth diverged ca. 4-6 million years ago and their phylogenetic relationship has been controversial. Morphological studies have suggested a mammoth Asian elephant relationship, while molecular studies have produced conflicting results. We obtained cytochrome b sequences of up to 545 base pairs from five mammoths, 14 Asian and eight African elephants. A high degree of polymorphism is detected within species. With a dugong sequence used as the outgroup, parsimony and maximum-likelihood analyses support a mammoth African elephant clade. As the dugong is a very distant outgroup, we employ likelihood analysis to root the tree with a molecular clock, and use bootstrap and Bayesian analyses to quantify the relative support for different topologies. The analyses support the mammoth African elephant relationship, although other trees cannot be rejected. Ancestral polymorphisms may have resulted in gene trees differing from the species phylogeny Examination of morphological data, especially from primitive fossil members, indicates that some supposed synapomorphies between the mammoth and Asian elephant are variable, others convergent or autapomorphous. A mammoth African elephant relationship is not excluded. Our results highlight the need, in both morphological and molecular phylogenetics, for multiple markers and close attention to within-taxon variation and outgroup selection.  相似文献   

12.
Src family kinases (SFKs) play many roles in the development and growth of flies and mice. In the July, 2002 issue of Developmental Cell, Bei et al. show that a C. elegans SFK collaborates with the Wnt pathway to specify cell fate in early development.  相似文献   

13.
J Wolters 《Bio Systems》1991,25(1-2):75-83
Large insertions and deletions in the variable regions of eukaryotic 16S-like rRNA relative to the archaebacterial structure have been defined as a marker for rapidly evolving taxa. Deletions in the rRNA occur in the diplomonad Giardia and the microsporidian Vairimorpha, whereas insertions occur in Euglenozoa (Euglena and the kinetoplastids), Acanthamoeba, Naegleria, Physarum, Dictyostelium, the apicomplexan Plasmodium, the ciliate Euplotes, and some metazoa. Except Acanthamoeba and Euplotes, all of these protists were previously placed at the base of the eukaryote phylogeny. A re-analysis of the 16S-like rRNA and 5S rRNA data with the neighborliness method revealed a close relationship of Apicomplexa to the dinoflagellate-ciliate clade, most probably closer to the dinoflagellates. Morphological evidence that supports this grouping is the layer of sacs underneath the plasma membrane in all three taxa and the identical structure of trichocysts in the apicomplexan Spiromonas and dinoflagellates. The remaining rapidly evolving organisms might still be misplaced in the 16S-like rRNA trees.  相似文献   

14.
15.
Adenosylcobalamin (coenzyme B(12)) serves as the cofactor for a group of enzymes that catalyze unusual rearrangement or elimination reactions. The role of the cofactor as the initiator of reactive free radicals needed for these reactions is well established. Less clear is how these enzymes activate the coenzyme towards homolysis and control the radicals once generated. The availability of high resolution X-ray structures combined with detailed kinetic and spectroscopic analyses have allowed several adenosylcobalamin enzymes to be computationally modeled in some detail. Computer simulations have generally obtained good agreement with experimental data and provided valuable insight into the mechanisms of these unusual reactions. Importantly, atomistic modeling of the enzymes has allowed the role of specific interactions between protein, substrate and coenzyme to be explored, leading to mechanistic predictions that can now be tested experimentally. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   

16.
The relationship between the five echinoderm classes has perplexed phylogeneticists for some time. Although each of the crinoids (C), asteroids (A), ophiuroids (O), echinoids (E) and holothuroids (H) are morphologically distinct, evidence from larval and adult morphology, molecular biology, and stratigraphy have failed to provide a single consensus solution. We have reviewed all available morphological and molecular data, added new data and reanalysed independent data sets individually and in combination, in order to resolve echinoderm class relationships. In total, we present 21 larval and 50 adult morphological characters, partial 28S-like large subunit rRNA gene data for 39 taxa and complete 18S-like small subunit rRNA gene data for 37 taxa. For a 5 taxon problem there are 105 possible rooted tree topologies, and yet we were consistently presented with three competing hypotheses when data sets were analysed both individually and in combination. The total evidence solution favoured (outgroup(C(A(O(E, H))))) although the alternative tree topology, (outgroup(C(O(A(E, H))))) was only one step longer and (outgroup(C((A, O),(E, H)))) was two steps longer. Only these three trees are serious contenders and the distribution of morphological characters suggests we should discount the solution placing ophiuroids as sister group to an asteroid+echinoid + holothurian clade. Thus we are left with (outgroup(C(A(O(E, H))))) and (outgroup(C((A, O),(E, H)))) as the two most plausible phylogenetic hypotheses. Our data showed high levels of phylogenetic signal and these trees best fit the available data.  相似文献   

17.
18.
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.  相似文献   

19.
Dark germinated Arabidopsis thaliana Ler seedlings grown on medium with the commonly used imidazole-type fungicide imazalil (IMA) resemble de-etiolated ( det ) brassinosteroid-deficient mutants. IMA hampers cell elongation in the hypocotyl, but stimulates radial expansion during dark growth. This phenotype could partially be restored by simultaneous addition of 24-epibrassinolide (EBR). A complete restoration of the hypocotyl length could only be achieved by combining EBR and gibberellic acid. As Arabidopsis thaliana etr1-3 de-etiolates on IMA containing medium in the dark, in the same dose-dependent manner as the wild type, its effects cannot be attributed to the induction of extra ethylene production. Studies with A. thaliana seedlings expressing CPD::GUS show that IMA up-regulates the expression of CPD, which encodes a key cytochrome P450 enzyme in the brassinosteroid (BR)-biosynthesis pathway. This effect is reverted by EBR, indicating that the up-regulation of CPD by IMA might result from the lack of end product brassinolide. Together these data suggest that, in Arabidopsis , one of the effects of IMA is an inhibition of BR-biosynthesis. IMA is an available and cheap agrochemical that might be a valuable tool for future brassinosteroid research.  相似文献   

20.
Based on recent molecular phylogenetic studies, the Old World bat family Miniopteridae, composed of species in the genus Miniopterus , has been shown to contain complex paraphyletic species, many of which are cryptic based on convergent morphological characters. Herein we resolve the phylogenetic relationships and taxonomy of the species complex M . manavi on Madagascar and in the Comoro Archipelago, where these animals occur in different bioclimatic zones. First using mitochondrial cytochrome- b sequence data to define clades and then morphology to corroborate the molecular data, including comparisons to type specimens, we demonstrate that animals identified as this taxon are a minimum of three species: M . manavi sensu stricto occurs in at least the central portion of the Central Highlands; M . griveaudi has a broad distribution in lowland northern and central western Madagascar and the Comoros (Anjouan and Grande Comore), and M . aelleni sp. n. has been found in northern and western Madagascar and the Comoros (Anjouan). In each case, these three clades were genetically divergent and monophyletic and the taxa are diagnosable based on different external and craniodental characters. One aspect that helped to define the systematics of this group was isolation of DNA from one of the paratypes of M. manavi collected in 1896 and new topotypic material. Miniopterus manavi is most closely allied to a recently described species, M. petersoni . At several localities, M . griveaudi and M . aelleni have been found in strict sympatry, and together with M. manavi sensu stricto show considerable convergence in morphological characters, but are not immediate sister taxa. In defining and resolving the systematics of cryptic species, such as miniopterid bats, the process of defining clades with molecular tools, segregating the specimens accordingly, and identifying corroborative morphological characters has been notably efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号