首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1981 a new epidemic of about two-dozen heterogeneous diseases began to strike non-randomly growing numbers of male homosexuals and mostly male intravenous drug users in the US and Europe. Assuming immunodeficiency as the common denominator the US Centers for Disease Control (CDC) termed the epidemic, AIDS, for acquired immunodeficiency syndrome. From 1981-1984 leading researchers including those from the CDC proposed that recreational drug use was the cause of AIDS, because of exact correlations and of drug-specific diseases. However, in 1984 US government researchers proposed that a virus, now termed human immunodeficiency virus (HIV), is the cause of the non-random epidemics of the US and Europe but also of a new, sexually random epidemic in Africa. The virus-AIDS hypothesis was instantly accepted, but it is burdened with numerous paradoxes, none of which could be resolved by 2003: Why is there no HIV in most AIDS patients, only antibodies against it? Why would HIV take 10 years from infection to AIDS? Why is AIDS not self-limiting via antiviral immunity? Why is there no vaccine against AIDS? Why is AIDS in the US and Europe not random like other viral epidemics? Why did AIDS not rise and then decline exponentially owing to antiviral immunity like all other viral epidemics? Why is AIDS not contagious? Why would only HIV carriers get AIDS who use either recreational or anti-HIV drugs or are subject to malnutrition? Why is the mortality of HIV-antibody-positives treated with anti-HIV drugs 7–9%, but that of all (mostly untreated) HIV-positives globally is only 1–4%? Here we propose that AIDS is a collection of chemical epidemics, caused by recreational drugs, anti-HIV drugs, and malnutrition. According to this hypothesis AIDS is not contagious, not immunogenic, not treatable by vaccines or antiviral drugs, and HIV is just a passenger virus. The hypothesis explains why AIDS epidemics strike non-randomly if caused by drugs and randomly if caused by malnutrition, why they manifest in drug- and malnutrition-specific diseases, and why they are not self-limiting via anti-viral immunity. The hypothesis predicts AIDS prevention by adequate nutrition and abstaining from drugs, and even cures by treating AIDS diseases with proven medications.  相似文献   

2.
Ibuprofen and salicylic acid, two typical non-steroidal anti-inflammatory drugs, are used commonly as analgesic drug in clinical medicine and sometimes are co-administered. When the drugs are co-administered, the drug-drug interactions may occur, and can lead to alter the safety and efficacy of drugs, resulting in variations in drug response of the co-administered drugs. Affinity capillary electrophoresis (ACE) was employed to investigate the competitive binding of ibuprofen and salicylic acid on serum albumin. Mobility ratio, derivatives from mobility shift method, was used to deduce the binding constant (K(b)). The binding constants of ibuprofen with HSA are 2.97×10? M?1 and 7.07×10? M?1, respectively; while for salicylic acid, the binding constant is 5.99×10? M?1. The competitive binding of the two drugs was investigated by addition of excessive ibuprofen into the solutions containing constant concentrations of salicylic acid and serum albumin. The results confirmed that ibuprofen and salicylic acid have different high-affinity binding site, but share some low-affinity binding sites on the serum albumin; and ibuprofen is able to partially replace salicylic acid from the preformed binary complexes of serum albumin and salicylic acid.  相似文献   

3.
Human immunodeficienty virus (HIV) infection is suppressed but not eliminated by antiretroviral drugs.?Viral?persistence in the face of therapy has been explained by viral latency, lowered effectiveness of drugs?in some anatomical sites and cell types, and cell-to-cell spread. These mechanisms allow for drug-sensitive virus to persist despite treatment. Understanding the persistence mechanism at work at?different times after infection, including the time of initial infection immediately following transmission?when reservoirs are first formed, will reveal if we are at the limit of what can be achieved with the?current therapy paradigm of suppressing ongoing virus replication with drugs. We discuss some of?the possible reasons why HIV persists at different points on the infection timeline, focusing on the?role ongoing replication may have in maintaining the infection despite drugs at early times postexposure.  相似文献   

4.
Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is one amongst the top 10 causes of death worldwide. The growing rise in antibiotic resistance compounded with slow and expensive drug discovery has further aggravated the situation. ‘Drug repurposing’ is a promising approach where known drugs are examined for a new indication. In the present study, we have attempted to identify drugs that could target MurB and MurE enzymes involved in the muramic acid synthesis pathway (Mur Pathway) in Mtb. FDA-approved drugs from two repositories i.e. Drug Bank (1932 drugs) and e-LEA3D (1852 drugs) were screened against these proteins. Several criteria were applied to study the protein-drug interactions and the consensus drugs were further studied by molecular dynamics (MD) simulation. Our study found Sulfadoxine (–7.3?kcal/mol) and Pyrimethamine (–7.8?kcal/mol) to show stable interaction with MurB while Lifitegrast (–10.5?kcal/mol) and Sildenafil (–9.1?kcal/mol) showed most reliable interaction with MurE. Furthermore, binding free energy (ΔGbind), RMSD and RMSF data and the number of hydrogen bonds corroborated the stability of interactions and hence these drugs for repurposing should be explored further.

Communicated by Ramaswamy H. Sarma  相似文献   

5.
Cerivastatin was recently withdrawn from the market because of 52 deaths attributed to drug-related rhabdomyolysis that lead to kidney failure. The risk was found to be higher among patients who received the full dose (0.8 mg/day) and those who received gemfibrozil concomitantly. Rhabdomyolysis was 10 times more common with cerivastatin than the other five approved statins. We address three important questions raised by this withdrawal. Should we continue to approve drugs on surrogate efficacy? Are all statins interchangeable? Do the benefits outweigh the risks of statins? We conclude that decisions regarding the use of drugs should be based on direct evidence from long-term clinical outcome trials.  相似文献   

6.
【背景】脂肪酸延长酶家族参与脂肪酸代谢具有真核生物的高度保守性,且与膜脂的代谢密切相关。但细胞极长链脂肪酸(Very long-chain fatty acid,VLCFA)的合成缺陷对膜的稳定性及多烯类药物的敏感性影响并不完全明晰。【目的】探究细胞VLCFA延长酶ELO1、ELO2和ELO3的作用及功能。【方法】研究脂肪酸延长酶缺陷型elo1?、elo2?和elo3?对多烯类药物两性霉素B (Amphotericin B,AmB)、制霉菌素(Nystatin,Ny)及唑类硝酸益康唑(Econazolenitrate,Eco)的响应,检测不同酵母细胞的麦角固醇,检测其对Na+的响应及胞内钠钾离子水平。【结果】发现细胞VLCFA延长酶ELO2和ELO3缺陷后对AmB高度敏感;VLCFA延长酶缺陷突变株elo2?和elo3?对其它多烯类药物Ny及唑类药物Eco也十分敏感;细胞膜不饱和脂肪酸增加也会改变膜的稳定性,实验结果表明外源油酸(Oleic acid,OLA)增加了elo2?和elo3?突变体的AmB敏感性;相对野生型BY4741和elo1?,缺陷菌株elo2?和elo3?中麦角固醇的含量有显著下降;钠钾离子平衡是维护细胞正常生理的必要条件,也是检测细胞膜稳定性的重要参数,发现VLCFA的合成缺陷菌株对高浓度的NaCl比野生型菌株更敏感,使用ICP-AES检测不同浓度AmB胁迫下细胞内钠钾离子水平,也显示VLCFA延长酶缺陷菌株中,钠水平表现出上升趋势,并且细胞内钾含量明显降低。【结论】细胞VLCFA的合成缺陷会导致细胞膜更脆弱、稳定性下降,从而提高真菌对多烯类药物的敏感性,也表明脂肪酸延长酶是潜在的抗真菌治疗靶点。  相似文献   

7.
A method to correct stent related complications non-invasively, is the local delivery of therapeutic agents. Different drugs have been delivered on stents, after being either dispersed or encapsulated in polymeric materials, and placed on stents to form drug-eluting-stents (DE-stents). Investigation of possibility to cover polymer - coated metallic stents, with liposomal drugs, for preparation of novel DE-liposome-coated-stents, has been initiated few years ago. In this context our research has been focused on answering the following questions: (i) Can liposomes be applied as coatings on polymer covered stents? (ii) Can drug release from liposome coated-stents be controlled? And: (iii) how is haemo-compatibility of stents affected? The results of the experiments carried out demonstrate that liposomal formulations of drugs can be used as coating systems of polymer covered stents for achieving sustained release of drugs at the site of interest. By modifying liposome characteristics, different amounts of drugs may be placed on the stents and their release rates can be adjusted for maximum therapeutic benefit. Finally, haemocompatibility of stents is highly improved (mainly in terms of cell adhesion and activation of coagulation system), when stents are coated with heparin-encapsulating -DRV liposomes.  相似文献   

8.
3 alpha-HSD appears to be a multifunctional enzyme. In addition to its traditional role of catalyzing early steps in androgen metabolism, it will also oxidoreduce prostaglandins and detoxify trans-dihydrodiols (proximate carcinogens). Since these novel reactions have been quantified using homogeneous enzyme it is necessary to interpret the role of the enzyme in these processes in vivo with some caution. However, it is rare that such observations on a purified hydroxysteroid dehydrogenase have led to such important questions. Is the 3 alpha-HSD the only steroid dehydrogenase that transforms prostaglandins and trans-dihydrodiols? Are hydroxysteroid dehydrogenases and prostaglandin dehydrogenases the same enzymes in certain tissues? Does 3 alpha-HSD protect against chemical carcinogenesis in vivo? The inhibition of the purified dehydrogenase by therapeutically relevant concentrations of anti-inflammatory drugs also deserves comment. Is this hydroxysteroid dehydrogenase really an in vivo target for anti-inflammatory drug action? Could these drugs exert some of their pharmacological effect either by preventing glucocorticoid metabolism in some tissues or by preventing the transformation of PGF2 alpha (non-inflammatory prostanoid) to PGE2 (a pro-inflammatory prostanoid)? Could these drugs, by inhibiting trans-dihydrodiol oxidation, potentiate the initiation of chemical carcinogenesis? These and other important questions can be answered only by developing specific inhibitors for the dehydrogenase to decipher its function in vivo.  相似文献   

9.
We investigated clinical features, therapy, and outcomes of patients hospitalized for drug-induced liver injury (DILI). DILI resolution was defined as liver biochemistry values back to normal or lower than CIOMS laboratory criteria; Chronicity was defined as persistent biochemical abnormality for >6?months after drugs?? withdrawal. Three-hundred cases were reviewed retrospectively; mean age 51 (13?C86) years, and 204 (68?%) were females. It included 267 (89?%) hepatocellular injury, 16 (5.3?%) cholestatic injury, and 17 (5.7?%) mixed injury cases. In hepatocellular injury group, 197 (73.8?%) patients with TBIL?<?10× ULN included 142 (72.1?%) females and 70 (26.2?%) patients with TBIL????10× ULN included 39 (55.7?%) females (P?=?0.012). Of 70 patients (TBIL????10× ULN), 20 were treated with steroid step-down therapy (79?±?26?days) and others with non-steroid therapy. The steroid therapy group showed higher DILI resolution rate (P?=?0.029) and shorter recovery time (P?=?0.012). Notably, 274/300 (91.3?%) patients resolved, 18/300 (6?%) developed chronic liver injury, 7/300 (2.3?%) died, and one patient received liver transplantation. In death group, TBIL, ALB, PT, and PTA revealed more severe abnormality than in recovery group. In 121/300 (40.3?%) patients, use of herbal medicines was the leading cause of liver injury, followed by antibiotics, cardiovascular drugs, and endocrine drugs. We concluded that step-down steroid therapy for DILI improved curative effect, shortened disease course, and was safe.  相似文献   

10.
Traditional drugs used in the east Anatolia including Erzurum, Erzincan, A?ri, Kars, I?dir, and Ardahan provinces have been surveyed. In this report, 169 remedies obtained from 87 plant species belonging to 38 families and 10 animal species are listed with their vernacular names, parts used, methods of preparing drugs, and traditional usages.  相似文献   

11.
The tumor vasculature is an increasingly attractive target for development of anticancer drugs. The fundamental principle for antiangiogenic cancer therapy is based on the inhibitory effect of chemical compounds, proteins or nucleotides on tumor angiogenesis. Indeed, in almost all preclinical tumor models, antiangiogenic monotherapy with different agents shows potent effects on suppression of tumor growth. However, antiangiogenic monotherapy has barely produced any clinical benefits in cancer patients. Although in combination with chemotherapy some antiangiogenic drugs demonstrate survival improvement in patients with certain types of cancers, the overall benefits by addition of antiangiogenic drugs (ADs) to chemotherapy remain modest. The disparity of AD responses between preclinical models and clinical cancer patients has raised important issues, which include: 1) Are current animal tumor models appropriate for assessing the therapeutic efficacy of ADs for clinical development? 2) What are the key differences between mouse tumor models and human cancer patients? 3) Are anti-VEGF drugs off target in cancer patients? 4) What are alternative options for improvement of the clinical benefits of ADs? In this short review, I discuss these critical issues in relation to the clinical practice of ADs.  相似文献   

12.
Phosphodiesterase 5 inhibitors (PDE-5Is) can suppress and (or) reverse pressure overload induced myocardial hypertrophy. This study investigated the suppressive effect of 2 PDE-5Is (sildenafil and ordonafil) on N-nitro-l-arginine methyl ester (L-NAME)-induced cardiac hypertrophy in rabbit heart, and examined their possible mechanism of action. L-NAME increased left ventricular thickness to 6.1± 0.18?mm from 4.6?± 0.13?mm (p?< 0.05), which regressed after treatment with either sildenafil or ordonafil to 5.1?± 0.1?mm and 4.8?± 0.2?mm, respectively (p?< 0.05). Phenylephrine increased neonatal rat ventricular myocyte cell surface area to 131%?± 3% of the control value, which was associated with significant increment in ERK1/2 to 143%?± 5% of the control value (p?< 0.05). Ordonafil and sildenafil decreased cell surface area to 95%?± 3% and 90%?± 1% of the control value, respectively. Both drugs decreased ERK1/2 to 88%?± 4% of the control value. Calcineurin activity was significantly decreased after 1?h of treatment with 0.1?mg·L(-1) ordonafil (1.15?± 0.05, p?< 0.05). For sildenafil (0.1?mg·L(-1)), calcineurin activity significantly decreased only after 24?h of incubation (22%). Also p38 activation was attenuated by ordonafil and sildenafil (0.1?mg·L(-1)). It is suggested that both drugs have the ability to reverse L-NAME-induced cardiac hypertrophy and suppress phenylphrine-induced myocyte hypertrophy, and that these effects may be mediated through the attenuation of calcineurin and its downstream signaling pathways (p38) in neonatal rat ventricular myocytes.  相似文献   

13.
Why, with all the progress in the field of neurodegeneration, do we still lack disease-modifying drugs that tackle the primary defect of severe cell loss? How much progress has been made toward this goal? Have we spent our time and resources wisely? And, most important, is there room for improvement? This commentary highlights several problems faced by researchers in studying the genetic etiology of neurodegenerative diseases and seeks to provide direction in overcoming some of these obstacles.  相似文献   

14.
Abstract

In this study, we investigated the effects of antibacterial drugs (moxifloxacin hydrochloride, levofloxacin hemihidrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium) on human serum paraoxonase-1 (hPON1) enzyme activity from human serum in vitro conditions. For this purpose, hPON1 enzyme was purified from human serum using simple chromatographic methods. The antibacterial drugs exhibited inhibitory effects on hPON1 at low concentrations. Ki constants were calculated to be 2.641?±?0.040?mM, 5.525?±?0.817?mM, 35.092?±?1.093?mM, 252.762?±?5.749?mM and 499.244?±?10.149?mM, respectively. The inhibition mechanism of moxifloxacin hydrochloride was competitive, whereas levofloxacin hemihidrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium were noncompetitive inhibitors.  相似文献   

15.
Adverse side effects of drugs are often caused by the interaction of drug molecules to targets other than the intended ones. In this study, we investigated the off-target interactions of some commercially available drugs with human α-thrombin. The drugs used in the study were selected from Super Drug Database based on the structural similarity to a known thrombin inhibitor argatroban. Interactions of these drugs with thrombin were initially checked by in silico docking studies and then confirmed by thrombin inhibition assay using a fluorescence microplate-based method. Results show that the three commonly used drugs piperacillin (anti-bacterial), azlocillin (anti-bacterial), and metolazone (anti-hypertensive and diuretic) have thrombin inhibitory activity almost similar to that of argatroban. The Ki values of piperacillin, azlocillin, and metolazone with thrombin are .55, .95, and .62?nM, respectively. The IC50 values of piperacillin, azlocillin, and metolazone with thrombin are 1.7, 2.9, and 1.92?nM, respectively. This thrombin inhibitory activity might be a reason for the observed side effects of these drugs related to blood coagulation and other thrombin activities. Furthermore, these compounds (drugs) may be used as anti-coagulants as such or with structural modifications.  相似文献   

16.
The lipolytic protein LipU was conserved in mycobacterium sp. including M. tuberculosis (MTB LipU) and M. leprae (MLP LipU). The MTB LipU was identified in extracellular fraction and was reported to be essential for the survival of mycobacterium. Therefore to address the problem of drug resistance in pathogen, LipU was selected as a drug target and the viability of finding out some FDA approved drugs as LipU inhibitors in both the cases was explored. Three-dimensional (3D) model structures of MTB LipU and MLP LipU were generated and stabilized through molecular dynamics (MD). FDA approved drugs were screened against these proteins. The result showed that the top-scoring compounds for MTB LipU were Diosmin, Acarbose and Ouabain with the Glide XP score of ?12.8, ?11.9 and ?11.7 kcal/mol, respectively, whereas for MLP LipU protein, Digoxin (?9.2 kcal/mol), Indinavir (?8.2 kcal/mol) and Travoprost (?8.2 kcal/mol) showed highest affinity. These drugs remained bound in the active site pocket of MTB LipU and MLP LipU structure and interaction grew stronger after dynamics. RMSD, RMSF and Rg were found to be persistent throughout the simulation period. Hydrogen bonds along with large number of hydrophobic interactions stabilized the complex structures. Binding free energies obtained through Prime/MM-GBSA were found in the significant range from ?63.85 kcal/mol to ?34.57 kcal/mol for MTB LipU and ?71.33 kcal/mol to ?23.91 kcal/mol for MLP LipU. The report suggested high probability of these drugs to demolish the LipU activity and could be probable drug candidates to combat TB and leprosy disease.  相似文献   

17.
The Gotham Prize was awarded to Alex Varshavsky for “Targeting the absence”, a strategy employing negative targets of cancer therapy. This is a brilliant example of therapeutic engineering: designing a sequence of events that leads to the selective killing of one type of cell, while sparing all others. A complex molecular device (Varshavsky’s Demon) examines DNA, recognizes the present target in normal cells and kills cancer cells. The strategy is limited by the delivery (transfection or infection) of DNA-based devices into each cell of our body. How can we overcome this limitation? Can therapeutic engineering be applied to small drugs? Can each small molecule reach a cell separately and, once in a cell, exert orchestrated action governed by cellular context? Here I describe how a combination of small drugs can acquire a demonic power to check, choose and selectively kill. The cytotoxicity is restricted to cells lacking (or having) one of the targets. For example, in the presence of a normal target, one drug can cancel the cytotoxic action of another drug. And by increasing a number of targets, we can increase the precision and power of such ‘restrictive’ combinations. Here I discuss restrictive combinations of currently available drugs that could be tested in clinical trials. Could then these combinations cure cancer today? And what does ‘cure’ really mean? This article suggests the answer.  相似文献   

18.
In order to examine the origin of the drug action and design new DNA/RNA-targeted drugs, the cooperativity effect involving drug–DNA/RNA intermolecular interaction in ketoprofen?cytosine?H2O ternary system were investigated by the B3LYP, B3LYP-D3, and MP2 methods with the 6-311++G(2d,p) basis set. The thermodynamic cooperativity was also evaluated at 310.15 K. The N–H?O, O–H?O, O–H?N, C–H?N, and C–H?O H bonds coexist in ternary complexes. The intermolecular interactions obtained by B3LYP-D3 are close to those calculated by MP2. The steric effects and van der Waals interactions have little influence on the cooperativity effects. The anti-cooperativity effect in ket?cyt?H2O is far more notable than the cooperativity effect, and the stability of the cyclic structure with anti-cooperativity effect is higher than that of the linear structure with cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that, in the presence of H2O, the anti-cooperativity effect plays a dominant role in the drug–DNA/RNA interaction, and the nature of the hydration in the binding of drugs to DNA/RNA bases is the H-bonding anti-cooperativity effect. Furthermore, the drug always links simultaneously with DNA/RNA base and H2O, and only in this way can the biological activity of drugs play a role. In most cases, the enthalpy change is the major factor driving the cooperativity, as is different from most of biomacromolecule complexes.  相似文献   

19.
Following the discovery of insulin, it took the rest of the twentieth century to understand how this hormone regulates intracellular metabolism. What are the main discoveries that led to our current understanding of this process? And how is this new knowledge being exploited in an attempt to develop improved drugs to treat the epidemic of type-2 diabetes?  相似文献   

20.
Abstract

Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R2?=?0.9324) and partially ionized compounds (R2?=?0.9367), contrary to the positive (R2?=?0.4684) and negatively charged compounds (R2?=?0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号