首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new aminolipopeptides, designated trichoderins A (1), A1 (2), and B (3), were isolated from a culture of marine sponge-derived fungus of Trichoderma sp. as anti-mycobacterial substances with activity against active and dormant bacilli. The chemical structures of trichoderins were determined on the basis of spectroscopic study. Trichoderins showed potent anti-mycobacterial activity against Mycobacterium smegmatis, Mycobacterium bovis BCG, and Mycobacterium tuberculosis H37Rv under standard aerobic growth conditions as well as dormancy-inducing hypoxic conditions, with MIC values in the range of 0.02–2.0 μg/mL.  相似文献   

2.
A series of novel benzofuran-isatin hybrids 6a–m tethered through different length alkyl linkers propylene, butylene, pentylene and hexylene were designed, synthesized and evaluated for their in vitro anti-mycobacterial activities against both drug-susceptible and multi-drug resistant (MDR) Mycobacterium tuberculosis (MTB) and cytotoxicity towards VERO cells. All hybrids with acceptable cytotoxicity in VERO cells (CC50: 64 to >1024 μg/mL) also exhibited considerable anti-mycobacterial activities against both drug-susceptible and MDR-MTB strains with MIC in a range of 0.125–4 μg/mL. The SAR indicated that the length of the linker played a pivotal role on the activity, and the longer linker could enhance the activity. The most active hybrid 6d (MIC: 0.125 and 0.125 μg/mL) was comparable to or better than rifampicin (MIC: 0.5 μg/mL) and isoniazid (MIC: 0.06 μg/mL) against MTB H37Rv, and was ≥256 folds more potent than rifampicin (MIC: 64 μg/mL) and isoniazid (MIC: >128 μg/mL) against MDR-MTB strain, but was less active than TAM16 (MIC: <0.06 μg/mL against the tested two strains). The hybrid 6d also showed low cytotoxicity towards VERO cell (CC50: 128 μg/mL), but it was inferior to TAM16 in metabolic stability and in vivo pharmacokinetic profiles.  相似文献   

3.
The purpose of this study was to prepare various novel amide tethered ciprofloxacin-1,2,3-triazole-isatin hybrids 7a-l, and evaluate their in vitro anti-mycobacterial activity as well as cytotoxicity in VERO cells. The synthesized hybrids showed considerable in vitro activity against both MTB H37Rv and MDR-MTB with MIC of 0.12 to 32 μg/mL, and acceptable cytotoxicity in VERO cells (CC50: 8.0–>128.0 μg/mL). In particular, the most active hybrid 7a (MICMTB H37Rv: 0.5 μg/mL and MICMDR-MTB: 0.12 μg/mL) had the activity in the same level with the first-line anti-tubercular agents isoniazid (MIC: 0.12 μg/mL) and rifampicin (MIC: 0.25 μg/mL), and it was 2-fold more active than the parent ciprofloxacin (MIC: 1.0 μg/mL) against MTB H37Rv, and ≥16 folds more potent than ciprofloxacin (MIC: 2.0 μg/mL), isoniazid (MIC: >64 μg/mL) and rifampicin (MIC: >64 μg/mL) against MDR-MTB. Moreover, hybrid 7a (CC50: 16.0 μg/mL) also displayed considerable cytotoxicity towards VERO cells. Thus, hybrid 7a could act as a platform for further investigations.  相似文献   

4.
Several 5-alkyl (or halo)-3'-azido (amino or halo) analogs of pyrimidine nucleosides have been synthesized and evaluated against Mycobacterium bovis, Mycobacterium tuberculosis and Mycobacterium avium. Among these compounds, 3'-azido-5-ethyl-2',3'-dideoxyuridine (3) was found to have significant antimycobacterial activities against M. bovis (MIC(50)=1μg/mL), M. tuberculosis (MIC(50)=10μg/mL) and M. avium (MIC(50)=10μg/mL).  相似文献   

5.
Discovery of novel antimycobacterial compounds that work on distinctive targets and by diverse mechanisms of action is urgently required for the treatment of mycobacterial infections due to the emerging global health threat of tuberculosis. We have identified a new class of 5-ethyl or hydroxy (or methoxy) methyl-substituted pyrimidine nucleosides as potent inhibitors of Mycobacterium bovis, Mycobacterium tuberculosis (H37Ra, H37Rv) and Mycobacterium avium. A series of 2'-'up' fluoro (or hydroxy) nucleosides (1, 2, 4-6, 9, 10, 13, 16, 18, 21, 24) was synthesized and evaluated for antimycobacterial activity. Among 2'-fluorinated compounds, 1-(3-bromo-2,3-dideoxy-2-fluoro-β-d-arabinofuranosyl)-5-ethyluracil (13) exhibited promising activity against M. bovis and Mtb alone, and showed synergism when combined with isoniazid. The most active compound emerging from these studies, 1-(β-d-arabinofuranosyl)-4-thio-5-hydroxymethyluracil (21) inhibited Mtb (H37Ra) (MIC(50)=0.5 μg/mL) and M. bovis (MIC(50)=0.5 μg/mL) at low concentrations, and was ten times more potent against Mtb (H37Ra) than cycloserine (MIC(50)=5.0 μg/mL), a second line drug. It also showed an additive effect when combined with isoniazid. Compound 21 retained sensitivity against a rifampicin-resistant (H37Rv) strain of Mtb (MIC(50)=1 μg/mL) at concentrations similar to that for a rifampicin-sensitive (H37Rv) strain, suggesting that it has no cross-resistance to a first-line anti-TB drug. In addition, the replication of M. avium was also inhibited by 21 (MIC(50)=10 μg/mL). No cellular toxicity of 13 or 21 was observed up to the highest concentration tested (CC(50)>100 μg/mL). These observations offer promise for a new drug treatment regimen to augment and complement the current chemotherapy of TB.  相似文献   

6.
The recent emergence of clinically oppressive superbugs, some with resistance to nearly all frontline drug therapies, has challenged our ability to combat such infectious organisms as Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Our medicinal chemistry program targeting this pathogen has identified several potent galactofuranose-based in vitro inhibitors of mycobacterial growth. The most potent compound, the Galf N,N-didecyl sulfenamide 8d, displayed anti-mycobacterial activity (MIC) of 1 microg/mL in a cell based assay against a representative strain of Mycobacterium smegmatis.  相似文献   

7.
Twenty-one novel alkyl/acyl/sulfonyl substituted fluoroquinolone derivatives were designed, synthesized and evaluated for their anti-tuberculosis and antibacterial activity. The targeted compounds were synthesized by the introduction of alkyl, acyl or sulfonyl moieties to the basic secondary amine moiety of moxifloxacin. Structures of the compounds were enlightened by FT-IR, 1H NMR, 13C NMR and HRMS data besides elemental analysis. Compounds were initially tested in vitro for their anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv using microplate alamar blue assay. Minimal inhibitory concentration (MIC) values of all compounds were found between > 25.00–0.39 µg/mL while compounds 1, 2 and 13 revealed an outstanding activity against M. tuberculosis H37Rv with MIC values of 0.39 µg/mL. Activities of compounds 121 against to a number of Gram-positive and Gram-negative bacteria and fast growing mycobacterium strain were also investigated by agar well diffusion and microdilution methods. According to antimicrobial activity results, compound 13 was found the most potent derivative with a IC50 value of <1.23 μg/mL against Staphylococcus aureus and clinical strain of methicillin-resistant clinical strain of S. aureus.  相似文献   

8.
New series of pyrazoles 4a – c and pyrazolopyrimidines 5a – f had been constructed. The newly synthesized compounds were assessed for their antimicrobial activity towards E. coli and P. aeruginosa (gram –ve bacteria), B. subtilis and S. aureus (gram +ve bacteria) and A. flavus and C. albicans (representative of fungi). The pyrazolylpyrimidine-2,4-dione derivative 5b is the most active candidate against B. subtilis (MIC=60 μg/mL) and P. aeruginosa (MIC=45 μg/mL). Regarding antifungal potential, compound 5f was the most effective against A. flavus (MIC=33 μg/mL). Similarly, compound 5c displayed strong antifungal activity towards C. Albicans (MIC=36 μg/mL) in reference to amphotericin B (MIC=60 μg/mL). Finally, the novel compounds had been docked inside dihydropteroate synthase (DHPS) to suggest the binding mode of these compounds.  相似文献   

9.
The alarming increase in bacterial resistance over the last decade along with a dramatic decrease in new treatments for infections has led to problems in the healthcare industry. Tuberculosis (TB) is caused mainly by Mycobacterium tuberculosis which is responsible for 1.4 million deaths per year. A world-wide threat with HIV co-infected with multi and extensively drug-resistant strains of TB has emerged. In this regard, herein, novel acrylic acid ethyl ester derivatives were synthesized in simple, efficient routes and evaluated as potential agents against several Mycobacterium species. These were synthesized via a stereospecific process for structure activity relationship (SAR) studies. Minimum inhibitory concentration (MIC) assays indicated that esters 12, 13, and 20 exhibited greater in vitro activity against Mycobacterium smegmatis than rifampin, one of the current, first-line anti-mycobacterial chemotherapeutic agents. Based on these studies the acrylic ester 20 has been developed as a potential lead compound which was found to have an MIC value of 0.4 μg/mL against Mycobacterium tuberculosis. The SAR and biological activity of this series is presented; a Michael-acceptor mechanism appears to be important for potent activity of this series of analogs.  相似文献   

10.
Two new C13‐polyketides, aureonitols A and B ( 1 and 2 ), along with five known compounds ( 3 – 7 ), were isolated from the solid fermentation culture of the plant endophytic fungus Chaetomium globosum from the aerial parts of Salvia miltiorrhiza. The structures and absolute configurations of 1 and 2 were determined by comprehensive spectroscopic data analysis and computed methods. Compound 5 was found to display the remarkable antimicrobial activities against four multidrug‐resistant bacteria (Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, and Staphylococcus epidermidis) with MIC values of 3.13–6.25 μg/mL (ciprofloxacin: 0.78–1.56 μg/mL), and also against all tested fungal strains with MIC values of 3.13–25 μg/mL (ketoconazole: 0.78–12.50 μg/mL).  相似文献   

11.
单核细胞增生李斯特菌是重要的革兰阳性食源性致病菌。近年来的报道显示出该菌耐受抗生素的能力有不断增强的趋势,为了探讨其耐药机制,对Sigma B(σB,李斯特菌中应对环境胁迫的主要调控因子)在抗生素耐受性中的作用进行了初步研究。检测和比较单核细胞增生李斯特菌标准菌株EGDe和其σB缺失突变菌株EGDeΔsigB对盘尼西林青霉素、氨苄西林青霉素、利福平、硫酸庆大霉素、四环素盐酸和红霉素6种抗生素的最小抑菌浓度(MIC);在测定的MIC的基础上,利用MTT(噻唑蓝活体染色法)法比较EGDe和EGDeΔsigB在1×MIC、2×MIC和8×MIC的氨苄西林青霉素、红霉素和利福平3种抗生素中的生长活性。EGDe对盘尼西林青霉素(0.16μg/mL)、四环素盐酸(0.25μg/mL)和硫酸庆大霉素(0.5μg/mL)的MIC高于EGDeΔsigB(分别为0.08、0.125和0.125μg/mL);而对氨苄西林青霉素、红霉素和利福平的MIC 2种菌株没有差别,分别为0.19、0.125和0.032μg/mL;与EGDe相比,EGDeΔsigB在氨苄西林青霉素、红霉素和利福平培养基中的生长活性较差,对抗生素的抑制更为敏感,而且随着这3种抗生素浓度的增加,其抑制程度也随之增强。Sigma B在单核细胞增生李斯特菌对抗生素的耐受中起到重要调节作用。  相似文献   

12.
Tuberculosis (TB) is a major health problem worldwide. A series of novel sansanmycin derivatives were designed, semi-synthesized and evaluated for their activity against drug-susceptible Mycobacterium tuberculosis strain H(37)Rv with sansanmycin A (SSA) as the lead. Among these analogs tested, compound 1d possessing an isopropyl group at the amino terminal afforded an increased antimycobacterial activity with a MIC value of 8 μg/mL in comparison with SSA. Importantly, it was active for rifampicin- and isoniazid-resistant M. tuberculosis strain isolated from patients in China. These promising results offer an opportunity for further exploration of this novel class of analogs as antitubercular agents.  相似文献   

13.
A series of dihydropyrimidine derivatives were synthesized by utilizing Biginelli reaction and evaluated for their in vitro anticancer activity against MCF-7 human breast cancer (HBC) cell line using sulforhodamine B (SRB) assay and antitubercular activity against Mycobacterium tuberculosis (MTB) H(37)Rv using Microplate Alamar Blue Assay (MABA). Compounds 13p, 13t were exhibited 70.6% and 63.7% of HBC cell growth inhibition at 10 μM concentration. Interestingly compound 13p was also found to be the most potent in the series against MTB H(37)Rv with MIC value of 0.125 μg/mL.  相似文献   

14.
Five new phenyl dihydroisocoumarin glycosides ( 1 – 5 ) and two known compounds ( 6 – 7 ) were identified from the butanol fraction of Scorzonera longiana. The structures of 1 – 7 were elucidated based on spectroscopic methods. Antimicrobial, antitubercular, and antifungal evaluation of compounds 1 – 7 were carried out using the microdilution method against nine microorganisms. Compound 1 was active only against Mycobacterium smegmatis (Ms) with a MIC value of 14.84 μg/mL. All tested compounds ( 1 – 7 ) were active against Ms but only compounds 3–7 were active against fungi (C. albicans, S. cerevisiae) with MIC values of 25.0–125 μg/mL. In addition, molecular docking studies were conducted against Ms DprE1 (PDB ID: 4F4Q), Mycobacterium tuberculosis (Mbt) DprE1 (PDB ID: 6HEZ), and arabinosyltransferase C (EmbC, PDB ID: 7BVE) enzymes. Compounds 2 , 5 , and 7 are the most effective Ms 4F4Q inhibitors. Compound 4 was the most promising inhibitory activity on Mbt DprE with the lowest binding energy of −9,9 kcal/mol.  相似文献   

15.
The extraction by supercritical fluid (SFE-CO2) from leaves of Piper diospyrifolium and chromatographic column purification afforded the isolation of a new benzoic acid derivative 4-methoxy-3-[(E)-3-methyl-1,3-butadien-1-yl]-5-(3-methyl-2-buten-1-yl)-benzoic acid (1). The chemical structure was elucidated on the basis of spectroscopic methods and comparison with literature data. SFE-CO2 extracts and (1) were tested for their anti-Mycobacterium tuberculosis activities and cytotoxicities in J774G.8 macrophages. The compound (1) and SFE-CO2 extracts exhibited moderate activities against M. tuberculosis H37Rv with minimum inhibitory concentration (MIC) values of 125 μg/mL. The MIC values of M. tuberculosis clinical isolates ranged from 125 μg/mL to >250 μg/mL. The cytotoxicities results showed a selectivity index range from 0.6 to 1.0. Additional studies in structure activity-relationship as well as synergistic activity with antituberculous drugs should be conducted for a better evaluation of anti-mycobacterial activity of this compound.  相似文献   

16.
Kang HK  Kim HY  Cha JD 《Biotechnology journal》2011,6(11):1397-1408
Methicillin-resistant Staphylococcus aureus (MRSA) is a dangerous microorganism, and creates serious medical problems. It causes many types of infections in humans and often acquires multi-drug resistance. In this study, silibinin was evaluated against 20 clinical isolates of MRSA, either alone or in combination with ampicillin or oxacillin, using a checkerboard assay. The silibinin exhibited good activity against isolates of MRSA, and MRSA ATCC33952 and MSSA ATCC25923, with minimum inhibitory concentrations/minimum bactericidal concentrations (MICs/MBCs) ranging between 2-8/4-16 μg/mL, for ampicillin 2-1024/2-2048 μg/mL, and for oxacillin 0.25-32/0.5-64 μg/mL. The range of MIC(50) and MIC(90) were 0.5-4 μg/mL and 2-8 μg/mL, respectively. The MICs/MBCs for the combination of silibinin plus oxacillin or ampicillin were reduced by ≥4-fold against the MRSA isolates tested, demonstrating a synergistic effect, as defined by a fractional inhibitory concentration index (FICI) of ≤0.5. Furthermore, a time-kill study evaluating the growth of the tested bacteria showed that growth was completely attenuated after 2-5 h of treatment with the 1/2 MIC of silibinin, regardless of whether it was administered alone or with oxacillin (1/2 MIC) or ampicillin (1/2 MIC). In conclusion, silibinin exerted synergistic effects when administered with oxacillin or ampicillin and the antibacterial activity and resistant regulation of silibinin against clinical isolates of MRSA might be useful in controlling MRSA infections.  相似文献   

17.
The absolute stereochemistry of the new antifungal and antibacterial antibiotic produced by Streptomyces sp.201 has been established by achieving the total synthesis of the product. A series of analogues have also been synthesized by changing the side chain and their bioactivity assessed against different microbial strains. Among them, 1e (R = C8H17) was found to be the most potent with MIC of 8 microg/mL against Mycobacterium tuberculosis, 12 microg/mL against Escherichia coli and 16 microg/mL against Bacillus subtilis 6 microg/mL against Proteus vulgaris. This was followed by 1b (R = C5H11) with MIC of 10-20 microg/mL range and 1d (R = C7H15) with MIC of 14-24 g/mL, whereas 1a (R = C4H9) and 1f (R = C18H35) were found to be completely inactive. Besides, 1c (R = C6H13) showed certain extent of antibacterial activity in the range of 24-50 microg/mL. Mycobacterium tuberculosis was very sensitive to 1e (R = C8H17) with MIC of 8 microg/mL. Antifungal activity of analogues 1d (R = C7H15) and 1e, (R = C8H17) against Fusarium oxysporum and Rhizoctonia solani were found promising with MFCs in the 15-18 microg/mL range.  相似文献   

18.
A series of novel substituted 1,2,3-triazolyldihydroquinolines 6a–o was designed and synthesized from 2-acetylthiophene in five-step reaction sequence involving modified Boltzmann-Rahtz reaction of β-Enaminone; Vilsmeier-Haack chloroformylation using DMF/POCl3; Ohira-Bestmann homologation of aldehyde to alkyne as key steps. The reaction of alkyne 4 with various aryl azides in the presence of copper sulfate and sodium ascorbate resulted desired new 1,2,3-triazolyldihydroquinolines 6a–o in excellent yields. In vitro screening of new compounds for anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv (Mtb), resulted in three derivatives 6a (MIC:1.56?µg/mL) and 6d, 6l (MIC:3.12?µg/mL) as promising antitubercular agents with lower cytotoxicity profiles.  相似文献   

19.
A series of novel Mannich bases of chlorokojic acid (2-chloromethyl-5-hydroxy-4H-pyran-4-one) were synthesized and their biological activities were investigated. Anticonvulsant activity results according to phase-I tests of Antiepileptic Drug Development (ADD) Program revealed that compound 13 was the most effective one at 4?h against subcutaneous pentylenetetrazole (scPTZ)-induced seizure test. Antimicrobial activities were evaluated in vitro against bacteria and fungi by using broth microdilution method. The antitubercular activities against Mycobacterium tuberculosis and M. avium were discussed with Resazurin microplate assay (REMA). The antimicrobial activity results indicated that compounds 1 and 12 (MIC: 8–16 µg/mL) showed higher activity against Gram negative bacteria while compound 12 had MIC: 4–16 µg/mL against Gram positive bacteria. Compound 1 was the most active one with MIC values of 8–32 µg/mL against fungi. Mannich bases also exhibit significant antitubercular activity in a MIC range of 4 to 32 µg/mL, especially compound 18 against M. avium.  相似文献   

20.
This study aimed to evaluate alpha-glucosidase inhibition and antimicrobial activity as well as cytotoxic activity of extracts from the endophytic fungus, Nigrospora sp., isolated from leaves of Helianthus annuus, which is widely cultivated for food and used as a medicinal plant. The fungus (TSU-CS003) was identified based on internal transcribed spacer ribosomal DNA sequences and fungal biomass, and fermentation broth was subjected to extraction by solvents (hexane and ethyl acetate). All extracts were tested for their antimicrobial activity, alpha-glucosidase inhibition, and cytotoxicity activity. In addition, the active extract was analyzed by using gas chromatography mass spectrometry (GC-MS) TSU-CS003 was identified as Nigrospora sphaerica. The fermentation broth extract (BE) showed strong antimicrobial activity against Staphylococcus aureus and methicillin-resistant S. aureus (Gram-positive bacteria) with minimum inhibitory concentration (MIC) values in the range of 16–32 μg/mL and a few yeasts with MIC values ranging from 64 to 128 μg/mL, especially Talaromyces marneffei with an MIC value of 4 μg/mL. The effects of BE were observed by SEM. The results showed that this extract affected the cell morphology of T. marneffei. The half-maximal inhibitory concentration (IC50) of BE from alpha-glucosidase inhibition was recorded as 17.25 μg/mL and also showed significant cytotoxicity against A549 human cancer cell lines with an IC50 value of 22.41 μg/mL. Furthermore, BE was analyzed by using GC-MS and divided into three main compounds, including 5-pentyldihydrofuran-2(3H)-one, (Z)-methyl 4-(isobutyryloxy)but-3-enoate, and 2-phenylacetic acid. This was the first report of the endophytic fungus N. sphaerica from H. annuus. It is a potential source of active metabolites, which gave the strong antifungal activity, antioxidant activity, and cytotoxicity to A549 cancer cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号