首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Viral infections are associated epidemiologically with the expression of type 1 diabetes in humans, but the mechanisms underlying this putative association are unknown. To investigate the role of viruses in diabetes, we used a model of viral induction of autoimmune diabetes in genetically susceptible biobreeding diabetes-resistant (BBDR) rats. BBDR rats do not develop diabetes in viral-Ab-free environments, but approximately 25% of animals infected with the parvovirus Kilham rat virus (KRV) develop autoimmune diabetes via a mechanism that does not involve beta cell infection. Using this model, we recently documented that TLR agonists synergize with KRV infection and increase disease penetrance. We now report that KRV itself activates innate immunity through TLR ligation. We show that KRV infection strongly stimulates BBDR splenocytes to produce the proinflammatory cytokines IL-6 and IL-12p40 but not TNF-alpha. KRV infection induces high levels of IL-12p40 by splenic B cells and Flt-3-ligand-induced bone marrow-derived dendritic cells (DCs) but only low levels of IL-12p40 production by thioglycolate-elicited peritoneal macrophages or GM-CSF plus IL-4-induced bone marrow-derived DCs. KRV-induced cytokine production is blocked by pharmacological inhibitors of protein kinase R and NF-kappaB. Genomic KRV DNA also induces BBDR splenocytes and Flt-3L-induced DCs from wild-type but not TLR9-deficient mice to produce IL-12p40; KRV-induced up-regulation of B lymphocytes can be blocked by TLR9 antagonists including inhibitory CpG and chloroquine. Administration of chloroquine to virus-infected BBDR rats decreases the incidence of diabetes and decreases blood levels of IL-12p40. Our data implicate the TLR9-signaling pathway in KRV-induced innate immune activation and autoimmune diabetes in the BBDR rat.  相似文献   

2.
3.

Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease associated with a break in self-tolerance reflected by a production of antinuclear autoantibodies. Since autoantibody production can be activated via nucleic acid Toll-like receptor 9 (TLR9), the respective pathway has been implicated in the development of SLE and pathogenic B cell responses. However, the response of B cells from SLE patients to TLR9 stimulation remains incompletely characterized.

Methods

In the current study, the response of B cells from SLE patients and healthy donors upon TLR9 stimulation was analyzed in terms of proliferation and cytokine production and correlated with the lupus disease activity and anti-dsDNA titers.

Results

B cells from SLE patients showed a reduced response to TLR9 agonist compared to B cells from healthy donors in terms of proliferation and activation. B cells from SLE patients with higher disease activity produced less interleukin (IL)-6, IL-10, vascular endothelial growth factor, and IL-1ra than B cells from healthy donors. Further analyses revealed an inverse correlation of cytokines produced by TLR9-stimulated B cells with lupus disease activity and anti-dsDNA titer, respectively.

Conclusion

The capacity of B cells from lupus patients to produce cytokines upon TLR9 engagement becomes less efficient with increasing disease activity, suggesting that they either enter an exhausted state or become tolerant to TLR stimulation for cytokine production when disease worsens.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0477-1) contains supplementary material, which is available to authorized users.  相似文献   

4.
Type I interferons (IFN) (IFN-alpha/beta) are recognized as both inhibitors and effectors of autoimmune disease. In multiple sclerosis, IFN-beta therapy appears beneficial, in part, due to its suppression of autoimmune inflammatory Th cell responses. In contrast, in systemic lupus erythematosus (SLE) triggering of plasmacytoid DC (pDC) Toll-like receptors (TLRs) by autoimmune complexes (autoICs) results in circulating type I IFN that appear to promote disease by driving autoantigen presentation and autoantibody production. To investigate how pDC-derived type I IFN might regulate Th cells in SLE, we examined a model in which sustained pDC stimulation by autoICs is mimicked by pretreating normal human PBMC with TLR9 agonist, CpG-A. Subsequently, PBMC Th cells are activated with superantigen, and APC are activated with CD40L. The role of CpG-A/TLR9-induced type I IFN in regulating PBMC is determined by blocking with virus-derived soluble type I IFN receptor, B18R. In summary, pretreatment with either rhIFN-alpha/beta or CpG-A inhibits PBMC secretion of superantigen-induced IFN-gamma and IL-17, and CD40L-induced IL-12p70 and IL-23. B18R prevents these effects. Data indicate that CpG-A-induced type I IFN inhibit IL-12p70-dependent PBMC IFN-gamma secretion by enhancing IL-10. Our results suggest that in SLE, circulating type I IFN may potentially act to inhibit inflammatory cytokine secretion.  相似文献   

5.

Introduction  

B cells have many different roles in systemic lupus erythematosus (SLE), ranging from autoantigen recognition and processing to effector functions (for example, autoantibody and cytokine secretion). Recent studies have shown that intracellular nucleic acid-sensing receptors, Toll-like receptor (TLR) 7 and TLR9, play an important role in the pathogenesis of SLE. Dual engagement of rheumatoid factor-specific AM14 B cells through the B-cell receptor (BCR) and TLR7/9 results in marked proliferation of autoimmune B cells. Thus, strategies to preferentially block innate activation through TLRs in autoimmune B cells may be preferred over non-selective B-cell depletion.  相似文献   

6.
B lymphocytes express both B cell receptor and Toll-like receptors (TLR). We show here that Bruton's tyrosine kinase (Btk), a critical component in B cell receptor signaling, is also involved in TLR9 signaling in B cells. Stimulation of B cells with TLR9 ligand CpG oligodeoxynucleotide (ODN) leads to transient phosphorylation of Btk, and in the absence of Btk, TLR9-induced proliferation of B cells is impaired. Interestingly, Btk(-/-) B cells secrete significantly more interleukin (IL)-12 but much less IL-10 compared with wild type B cells upon TLR9 stimulation. Immunization of Btk(-/-) mice with CpG ODN also leads to elevated levels of IL-12 in vivo and consequently, a greater -fold increment in the production of Th1 type IgG2b and IgG3 antibodies in these mice compared with wild type controls. The addition of exogenous recombinant IL-10 could suppress IL-12 production by TLR9-activated Btk(-/-) B cells, suggesting that in B cells, Btk negatively regulates IL-12 through the induction of autocrine IL-10 production. TLR9 signaling also leads to the activation of NFkappaB, including the p65RelA subunit in wild type B cells. The lack of Btk signaling affects the activation of NFkappaB and impairs the translocation of the p65RelA subunit to the nucleus of B cells upon TLR9 stimulation. However, p65RelA(-/-) B cells could respond similarly to wild type B cells in terms of IL-10 and IL-12 secretion when stimulated with CpG ODN, suggesting that the defect in NFkappaB p65RelA activation is additional to the impairment in cytokine production in TLR9-activated Btk(-/-) B cells. Thus, Btk plays an important role in TLR9 signaling and acts separately to regulate NFkappaB RelA activation as well as IL-10 and IL-12 production in B cells.  相似文献   

7.

Objective

To observe the proportion of peripheral T follicular helper (Tfh) cells in patients with systemic lupus erythematosus (SLE) and to assess the role of steroids on Tfh cells from SLE patients.

Methods

Peripheral blood mononuclear cells (PBMCs) from 42 SLE patients and 22 matched healthy subjects were collected to assess proportions of circulating CXCR5+PD1+/CD4+ T cells (Tfh), CD4+CCR6+ T cells (Th17-like) and CD19+CD138+ plasma cells by flow cytometry. 8 of the patients had their blood redrawn within one week after receiving methylprednisolone pulse treatment. Disease activity was evaluated by SLE disease activity index. To test the effect of IL-21 and corticosteroids on Tfh cells in vitro, PBMCs harvested from another 15 SLE patients were cultured with medium, IL-21, or IL-21+ dexamethasone for 24 hours and 72 hours. PBMCs from an independent 23 SLE patients were cultured with different concentrations of dexamethasone for 24 hours.

Results

Compared to normal controls, percentages of circulating Tfh cells, but not Th17 cells, were elevated in SLE patients and correlated with disease activity. Proportions of Tfh cells in SLE patients were positively correlated with those of plasma cells and serum levels of antinuclear antibodies. After methylprednisolone pulse treatment, both percentages and absolute numbers of circulating Tfh cells were significantly decreased. In vitro cultures showed an increase of Tfh cell proportion after IL-21 stimulation that was totally abolished by the addition of dexamethasone. Both 0.5 and 1 µM dexamethasone decreased Tfh cells dose dependently (overall p = 0.013).

Conclusions

We demonstrated that elevated circulating Tfh cell proportions in SLE patients correlated with their disease activities, and circulating levels of plasma cells and ANA. Corticosteroids treatment down-regulated aberrant circulating Tfh cell proportions both in vivo and in vitro, making Tfh cells a new treatment target for SLE patients.  相似文献   

8.
Preterm birth, the major cause of neonatal mortality in developed countries, is associated with intrauterine infections and inflammation, although the exact mechanisms underlying this event are unclear. In this study, we show that circulating fetal DNA, which is elevated in pregnancies complicated by preterm labor or preeclampsia, triggers an inflammatory reaction that results in spontaneous preterm birth. Fetal DNA activates NF-κB, shown by IκBα degradation in human PBMCs resulting in production of proinflammatory IL-6. We show that fetal resorption and preterm birth are rapidly induced in mice after i.p. injection of CpG or fetal DNA (300 μg/dam) on gestational day 10-14. In contrast, TLR9(-/-) mice were protected from these effects. Furthermore, this effect was blocked by oral administration of the TLR9 inhibitor chloroquine. Our data therefore provide a novel mechanism for preterm birth and preeclampsia, highlighting TLR9 as a potential therapeutic target for these common disorders of pregnancy.  相似文献   

9.
There have been only a few studies indicating that B cell hyperactivity in SLE could depend on Th cell activation. In particular, circulating CD4+ cells were found to express Ia. Our own previous investigations have shown that the decreased IL-2 secretion capacity in vitro of CD4+ cells in SLE is restored to normal when the cells are rested for a few days in culture. This suggested the presence of activated, exhausted T cells in the circulation. In this study, we report several observations concerning T cell function in SLE. 1) Decreased IL-2 secretion in vitro of PBL was found to correlate significantly with increased spontaneous IgG secretion of such cells; immunosuppressive treatment of 22 patients with steroids plus cyclosporin A led, to a large extent, to a correction of both abnormalities. 2) 9 of 18 patients with active disease (and low IL-2 secretion in vitro) had increased IL-2 levels in serum by ELISA; two sera contained IL-2 biologic activity, and chromatography of one serum showed IL-2 in a high molecular size complex (Mr approximately 50,000) dissociable with 6 M urea. The serum levels of IL-2R were also frequently increased, even in less active SLE. 3) In cell culture experiments, the IgG secretion by purified B cells from 6 of 9 patients with active SLE was increased by autologous T cells acting either alone (3 patients) or synergistically with rIL-2 (3 patients); the B cells from all 9 patients showed increased IL-2 responsiveness compared with blood donor B cells. Taken together, these results provide new evidence that increased T cell activation occurs and plays a role in SLE.  相似文献   

10.
IntroductionCytokines produced by B cells are believed to play important roles in autoimmune diseases. CD22 targeting by epratuzumab has been demonstrated to inhibit phosphorylation of B cell receptor (BCR) downstream signaling in B cells. It has been shown that other sialoadhesin molecules related to CD22 have immunoregulatory functions; therefore, in the present study, we addressed the role of epratuzumab on the production of key cytokines by B cells of patients with systemic lupus erythematosus (SLE) and of healthy donors (HD).MethodsPeripheral blood B cells were purified and activated by BCR with or without Toll-like receptor 9 (TLR9) stimulation in the presence or absence of epratuzumab. Cytokine production by B cells (interleukin [IL]-6, tumor necrosis factor [TNF]-α and IL-10) in the supernatant and the induction of IL-10+ B cells from patients with SLE and HD were analyzed.ResultsThe secretion of the proinflammatory cytokines TNF-α and IL-6 by anti-BCR and BCR- and/or TLR9-activated B cells from HD and patients with SLE was inhibited by epratuzumab. In contrast, the production of IL-10 by B cells was not affected by epratuzumab under either stimulation condition. Consistently, the induction of IL-10–producing B cells in culture was not affected by epratuzumab.ConclusionsEpratuzumab, by targeting CD22, was able to inhibit the production of the proinflammatory cytokines IL-6 and TNF-α by B cells, in contrast to IL-10, in vitro. These data suggest that targeting CD22 alters the balance between proinflammatory cytokines (TNF-α, IL-6) and the regulatory cytokine IL-10 as another B cell effector mechanism.  相似文献   

11.
In this report we provide evidence, for the first time, that bacterial DNA in the context of heat-killed Brucella abortus (HKBA) engages TLR9 in dendritic cells (DC), resulting in a Th1-like cytokine response. This is based on the findings that HKBA induction of IL-12p40 is: 1) abolished in DC from TLR9(-/-) mice; 2) blocked by suppressive oligodeoxynucleotides; 3) simulated by bacterial DNA derived from HKBA; and 4) abrogated by DNase or methylation of the DNA from HKBA. Furthermore, the effect of HKBA can be inhibited by chloroquine, indicating that endosomal acidification is required and supporting the notion that DNA from HKBA is interacting with TLR9 at the level of the endosome, as is the case with CpG oligodeoxynucleotides. In addition to DC, HKBA can elicit IL-12p40 secretion from macrophages, in which case the effect is wholly MyD88 dependent but only partially TLR9 dependent. This probably explains why HKBA effects in vivo are only partially reduced in TLR9(-/-), but absent in MyD88(-/-) mice. Because of their intimate interactions with T cells, the DC response is most likely to be critical for linking innate and adaptive immune responses, whereas the macrophage reaction may play a role in enhancing NK cell and bystander immune responses. In addition to IL-12p40, HKBA induces other Th1-like cytokines, namely, IFN-alpha and IFN-gamma, in a TLR9-dependent manner. These cytokines are important in protection against viruses and bacteria, and their induction enhances HKBA as a potential carrier for vaccines.  相似文献   

12.
Common variable immune deficiency (CVID) is a primary immune deficiency characterized by low levels of serum immune globulins, lack of Ab, and reduced numbers of CD27+ memory B cells. Although T, B, and dendritic cell defects have been described, for the great majority, genetic causes have not been identified. In these experiments, we investigated B cell and plasmacytoid dendritic cell activation induced via TLR9, an intracellular recognition receptor that detects DNA-containing CpG motifs from viruses and bacteria. CpG-DNA activates normal B cells by the constitutively expressed TLR9, resulting in cytokine secretion, IgG class switch, immune globulin production, and potentially, the preservation of long-lived memory B cells. We found that CpG-DNA did not up-regulate expression of CD86 on CVID B cells, even when costimulated by the BCR, or induce production of IL-6 or IL-10 as it does for normal B cells. TLR9, found intracytoplasmically and on the surface of oligodeoxynucleotide-activated normal B cells, was deficient in CVID B cells, as was TLR9 mRNA. TLR9 B cell defects were not related to proportions of CD27+ memory B cells. CpG-activated CVID plasmacytoid dendritic cells did not produce IFN-alpha in normal amounts, even though these cells contained abundant intracytoplasmic TLR9. No mutations or polymorphisms of TLR9 were found. These data show that there are broad TLR9 activation defects in CVID which would prevent CpG-DNA-initiated innate immune responses; these defects may lead to impaired responses of plasmacytoid dendritic cells and loss of B cell function.  相似文献   

13.
The objective of this study was to investigate the interaction between levels of BAFF (B-cell activation factor of the tumour necrosis factor [TNF] family) and APRIL (a proliferation-inducing ligand) and B-cell frequencies in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) treated with the B-cell-depleting agent rituximab. Ten patients with SLE were treated with rituximab in combination with cyclophosphamide and corticosteroids. They were followed longitudinally up to 6 months after B-cell repopulation. Nine patients with RA, resistant or intolerant to anti-TNF therapy, treated with rituximab plus methotrexate were investigated up to 6 months after treatment. The B-cell frequency was determined by flow cytometry, and serum levels of BAFF and APRIL were measured by enzyme-linked immunosorbent assays. BAFF levels rose significantly during B-cell depletion in both patient groups, and in patients with SLE the BAFF levels declined close to pre-treatment levels upon B-cell repopulation. Patients with SLE had normal levels of APRIL at baseline, and during depletion there was a significant decrease. In contrast, patients with RA had APRIL levels 10-fold higher than normal, which did not change during depletion. At baseline, correlations between levels of B cells and APRIL, and DAS28 (disease activity score using 28 joint counts) and BAFF were observed in patients with RA. In summary, increased BAFF levels were observed during absence of circulating B cells in our SLE and RA patient cohorts. In spite of the limited number of patients, our data suggest that BAFF and APRIL are differentially regulated in different autoimmune diseases and, in addition, differently affected by rituximab treatment.  相似文献   

14.
The human toll like receptor 9 (TLR9) detects differences between microbial and host DNA, based on unmethylated deoxycytidyl deoxyguanosine dinucleotide (CpG) motifs, leading to activation of both innate and adaptive immune mechanisms. The synthetic TLR9 agonist, CpG-ODN, can substitute for microbial DNA in these responses, and is in clinical trials as an immunomodulatory agent in diseases as diverse as infections, cancer and allergic disorders. Human TLR9 is expressed on cells of haematopoietic origin (principally plasmacytoid dendritic cells and B cells), but has also been described as being expressed on a number of other cell types. In order to clarify the expression and function of TLR9 in a range of cells of both haematopoietic and non-haematopoietic origin, we investigated the level of expression of TLR9 mRNA, and the ability of the cells to respond to CpG-ODN by upregulation of cell surface markers, cytokine production, cellular proliferation and activation of NFκB. Our data show that the cellular response to CpG-ODN depended on a threshold level of expression of TLR9. TLR9 was widely expressed amongst B cell tumours (with the exception of myeloma cell lines), but we did not find either threshold levels of expression of TLR9 or responses to CpG-ODN in several myeloma or myeloid tumour cell lines or any non-haematological tumour cell lines tested in our study. TLR9-positive cells varied significantly in their responses to CpG-ODN, and the level of TLR9 expression beyond the threshold did not correlate with the magnitude of the response to CpG-ODN. Finally, CpG-ODN induced NFκB activation and increased cellular proliferation in Hek293 cells that had been stably transfected with hTLR9, but did not affect the expression of surface markers or synthesis of IL-6, IL-10 or TNF-α. Thus both haematological and non-haematological cells expressing appropriate levels of TLR9 respond to CpG-ODN, but the nature of the TLR9-mediated response is dependent on cell type.  相似文献   

15.
Toll-like receptors (TLR) are employed by the innate immune system to detect microbial pathogens based on conserved microbial pathogen molecules. For example, TLR9 is a receptor for CpG-containing microbial DNA, and its activation results in the production of cytokines and type I interferons from human B cells and plasmacytoid dendritic cells, respectively. Both are required for mounting an efficient antibacterial or antiviral immune response. These effects are mimicked by synthetic CpG oligodeoxynucleotides (ODN). Although several hyporesponsive TLR9 variants have been reported, their functional relevance in human primary cells has not been addressed. Here we report a novel TLR9 allele, R892W, which is hyporesponsive to CpG ODN and acts as a dominant-negative in a cellular model system. The R892W variant is characterized by increased MyD88 binding and defective co-localization with CpG ODN. Whereas primary plasmacytoid dendritic cells isolated from a heterozygous R892W carrier responded normally to CpG by interferon-α production, carrier B cells showed impaired IL-6 and IL-10 production. This suggests that heterozygous carriage of a hyporesponsive TLR9 allele is not associated with complete loss of TLR9 function but that TLR9 signals elicited in different cell types are regulated differently in human primary cells.  相似文献   

16.
《MABS-AUSTIN》2013,5(4):991-999
The Fc receptor (FcγRIIb) inhibits B cell responses when coengaged with B cell receptor (BCR), and has become a target for new autoimmune disease therapeutics. For example, BCR and FcγRIIb coengagement via the Fc-engineered anti-CD19 XmAb5871 suppresses humoral immune responses. We now assess effects of XmAb5871 on other activation pathways, including the pathogen-associated molecular pattern receptor, TLR9. Since TLR9 signaling is implicated in autoimmune diseases, we asked if XmAb5871 could inhibit TLR9 costimulation. We show that XmAb5871 decreases ERK and AKT activation, cell proliferation, cytokine, and IgG production induced by BCR and/or TLR9 signals. XmAb5871 also inhibited differentiation of citrullinated peptide-specific plasma cells from rheumatoid arthritis patients. XmAb5871 may therefore have potential to suppress pathogenic B cells in autoimmune diseases.  相似文献   

17.
18.

Introduction

Progranulin (PGRN) is the precursor of granulin (GRN), a soluble cofactor for toll-like receptor 9 (TLR9) signaling evoked by oligonucleotide (CpG)-DNA. Because TLR9 signaling plays an important role in systemic lupus erythematosus (SLE), we investigated whether PGRN is involved in the pathogenesis of SLE.

Methods

We measured concentrations of serum PGRN and interleukin-6 (IL-6) with enzyme-linked immunosorbent assay (ELISA) in patients with SLE (n = 68) and in healthy controls (n = 60). We assessed the correlation between the serum PGRN levels and established disease-activity indexes. The sera from the patients with high PGRN titers (>80 ng/ml) at the initial evaluation were reevaluated after the disease was ameliorated by treatment. We also measured the IL-6 concentration secreted by peripheral blood mononuclear cells (PBMCs) incubated with (a) oligonucleotide (CpG-B) in the presence or absence of recombinant human PGRN (rhPGRN); and (b) lupus sera in the presence or absence of a neutralizing anti-PGRN antibody.

Results

Serum PGRN levels were significantly higher in SLE patients than healthy controls. Their levels were significantly associated with activity of clinical symptoms. They also significantly correlated with values of clinical parameters, including the SLE Disease Activity Index and anti-double-stranded DNA antibody titers, and inversely with CH50, C3, and C4 levels. Moreover, serum PGRN levels significantly decreased after successful treatment of SLE. The rhPGRN significantly upregulated the production of IL-6 by PBMCs stimulated with CpG-B. Patients' sera stimulated production of IL-6 from PBMCs, which was significantly impaired by neutralization of PGRN. The serum PGRN levels significantly correlated with the serum IL-6 levels.

Conclusions

Serum PGRN could be a useful biomarker for disease activity of SLE. PGRN may be involved in the pathogenesis of SLE partly by enhancing the TLR9 signaling.  相似文献   

19.
Bacterial DNA (CpG DNA) induces macrophage activation and the production of inflammatory mediators, including tumor necrosis factor (TNF) and nitric oxide (NO) by these cells. However, the role of bacterial DNA in the macrophage response to whole bacteria is unknown. We used overlapping strategies to estimate the relative contribution of bacterial DNA to the upregulation of TNF and NO production in macrophages stimulated with antibiotic-treated group B streptococci (GBS). Selective inhibitors of the bacterial DNA/TLR9 pathway (chloroquine, an inhibitory oligonucleotide, and DNase I) consistently inhibited GBS-induced TNF secretion by 35-50% in RAW 264.7 macrophages and murine splenic macrophages, but had no effect on inducible nitric oxide synthase (iNOS) accumulation or NO secretion. Similarly, splenic and peritoneal macrophages from mice lacking TLR9 expression secreted 40% less TNF than macrophages from control mice after GBS challenge but accumulated comparable amounts of iNOS protein. Finally, studies in both RAW 264.7 cells and macrophages from TLR9-/- mice implicated GBS DNA in the upregulation of interleukins 6 (IL-6) and 12 (IL-12) but not interferon-beta (IFNbeta), a key intermediary in macrophage production of iNOS/NO. Our data suggest that the bacterial DNA/TLR9 pathway plays an important role in stimulating TNF rather than NO production in macrophages exposed to antibiotic-treated GBS, and that TLR9-independent upregulation of IFNbeta production by whole GBS may account for this difference.  相似文献   

20.
The Fc receptor (FcγRIIb) inhibits B cell responses when coengaged with B cell receptor (BCR), and has become a target for new autoimmune disease therapeutics. For example, BCR and FcγRIIb coengagement via the Fc-engineered anti-CD19 XmAb5871 suppresses humoral immune responses. We now assess effects of XmAb5871 on other activation pathways, including the pathogen-associated molecular pattern receptor, TLR9. Since TLR9 signaling is implicated in autoimmune diseases, we asked if XmAb5871 could inhibit TLR9 costimulation. We show that XmAb5871 decreases ERK and AKT activation, cell proliferation, cytokine, and IgG production induced by BCR and/or TLR9 signals. XmAb5871 also inhibited differentiation of citrullinated peptide-specific plasma cells from rheumatoid arthritis patients. XmAb5871 may therefore have potential to suppress pathogenic B cells in autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号