首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative stress and apoptosis in metal ion-induced carcinogenesis   总被引:12,自引:0,他引:12  
Epidemiological evidence suggests that exposure to certain metals causes carcinogenesis. The mechanisms of metal-induced carcinogenesis have been pursued in chemical, biochemical, cellular, and animal models. Significant evidence has accumulated that oxidative stress may be a common pathway in cellular responses to exposure to different metals. For example, in the last few years evidence in support of a correlation between the generation of reactive oxygen species, DNA damage, tumor promotion, and arsenic exposure has strengthened. This article summarizes the current literature on metal-mediated oxidative stress, apoptosis, and their relation to metal-mediated carcinogenesis, concentrating on arsenic and chromium.  相似文献   

2.
Oxidative stress and experimental carcinogenesis   总被引:6,自引:0,他引:6  
  相似文献   

3.
Reactive oxygen species (ROS) are the more abundant free radicals in nature and have been related with a number of tissue/organ injuries induced by xenobiotics, ischemia, activation of leucocytes, UV exposition, etc. Oxidative stress is caused by an imbalance between ROS production and a biological system's ability to readily detoxify these reactive intermediates or easily repair the resulting damage. Thus, oxidative stress is accepted as a critical pathophysiological mechanism in different frequent human pathologies, including cancer. In fact ROS can cause protein, lipid, and DNA damage, and malignant tumors often show increased levels of DNA base oxidation and mutations. Different lifestyle- and environmental-related factors (including, e.g., tobacco smoking, diet, alcohol, ionizing radiations, biocides, pesticides, viral infections) and other health-related factors (e.g. obesity or the aging process) may be procarcinogenic. In all these cases oxidative stress acts as a critical pathophysiological mechanism. Nevertheless it is important to remark that, in agreement with present knowledge, oxidative/nitrosative/metabolic stress, inflammation, senescence, and cancer are linked concepts that must be discussed in a coordinated manner.  相似文献   

4.
5.
《Autophagy》2013,9(2):284-285
  相似文献   

6.
氧化应激与糖尿病   总被引:2,自引:0,他引:2  
高血糖引起的自由基产生过多或消除障碍导致氧化应激的出现,氧化应激与糖尿病及其并发症的发生发展密切相关。抗氧化治疗为糖尿病及并发症的防治提供了新的思路。  相似文献   

7.
8.
Genital infection by high risk Human Papillomavirus (HR-HPV), although recognized as the main etio-pathogenetic factor of cervical cancer, is not per se sufficient to induce tumour development. Oxidative stress (OS) represents an interesting and under-explored candidate as a promoting factor in HPV-initiated carcinogenesis. To gain insight into the role of OS in cervical cancer, HPV-16 positive tissues were collected from patients with invasive squamous cervical carcinoma, from patients with High Grade dysplastic HPV lesions and from patients with no clinical evidence of HPV lesions. After virological characterization, modulation of proteins involved in the redox status regulation was investigated. ERp57 and GST were sharply elevated in dysplastic and neoplastic tissues. TrxR2 peaked in dysplastic samples while iNOS was progressively reduced in dysplastic and neoplastic samples. By redox proteomic approach, five proteins were found to have increased levels of carbonyls in dysplastic samples respect to controls namely: cytokeratin 6, actin, cornulin, retinal dehydrogenase and GAPDH. In carcinoma samples the peptidyl-prolyl cis-trans isomerase A, ERp57, serpin B3, Annexin 2 and GAPDH were found less oxidized than in dysplastic tissues. HPV16 neoplastic progression seems associated with increased oxidant environment. In dysplastic tissues the oxidative modification of DNA and proteins involved in cell morphogenesis and terminal differentiation may provide the conditions for the neoplastic progression. Conversely cancer tissues seem to attain an improved control on oxidative damage as shown by the selective reduction of carbonyl adducts on key detoxifying/pro-survival proteins.  相似文献   

9.
Oxidative stress,antioxidants and stress tolerance   总被引:183,自引:0,他引:183  
Traditionally, reactive oxygen intermediates (ROIs) were considered to be toxic by-products of aerobic metabolism, which were disposed of using antioxidants. However, in recent years, it has become apparent that plants actively produce ROIs as signaling molecules to control processes such as programmed cell death, abiotic stress responses, pathogen defense and systemic signaling. Recent advances including microarray studies and the development of mutants with altered ROI-scavenging mechanisms provide new insights into how the steady-state level of ROIs are controlled in cells. In addition, key steps of the signal transduction pathway that senses ROIs in plants have been identified. These raise several intriguing questions about the relationships between ROI signaling, ROI stress and the production and scavenging of ROIs in the different cellular compartments.  相似文献   

10.
Oxidative stress and living cells   总被引:1,自引:0,他引:1  
  相似文献   

11.
Oxidative stress and heart failure   总被引:3,自引:0,他引:3  
Various abnormalities have been implicated in the transition of hypertrophy to heart failure but the exact mechanism is still unknown. Thus heart failure subsequent to hypertrophy remains a major clinical problem. Recently, oxidative stress has been suggested to play a critical role in the pathogenesis of heart failure. Here we describe antioxidant changes as well as their significance during hypertrophy and heart failure stages. Heart hypertrophy in rats and guinea pigs, in response to pressure over-load, is associated with an increase in antioxidant reserve and a decrease in oxidative stress. Hypertrophied rat hearts show increased tolerance for different oxidative stress conditions such as those imposed by free radicals, hypoxia-reoxygenation and ischemia-reperfusion. On the other hand, heart failure under acute as well as chronic conditions is associated with reduced antioxidant reserve and increased oxidative stress. The latter may have a causal role as suggested by the protection seen with antioxidant treatment in acute as well as in chronic heart failure. It is becoming increasingly apparent that, anytime the available antioxidant reserve in the cell becomes inadequate, myocardial dysfunction is imminent.  相似文献   

12.
Oxidative stress and muscular dystrophy   总被引:1,自引:0,他引:1  
Oxidative stress may be the fundamental basis of many of the structural, functional and biochemical changes characteristic of the inherited muscular dystrophies in animals and humans. The presence of by-products of oxidative damage, and the compensatory increases in cellular antioxidants, both indicate oxidative stress may be occurring in dystrophic muscle. Changes in the proportions and metabolism of cellular lipids, abnormal functions of cellular membranes, altered activity of membrane-bound enzymes such as the SR Ca2+-ATPase, disturbances in cellular protein turnover and energy production and a variety of other changes all indicate that these inherited muscular dystrophies appear more like the results of oxidative stress to muscle than any other type of underlying muscle disturbance. Particular details of these altered characteristics of dystrophic muscle, in combination with current knowledge on the processes of oxidative damage to cells, may provide some insight into the underlying biochemical defect responsible for the disease, as well as direct research towards the ultimate goal of an effective treatment.  相似文献   

13.
Oxidative stress plays an important role in the modulation of several important physiological functions. On the other side, oxidative stress is accountable for development of many unphysiological changes, which can be deleterious for cells. Consequently, at the present time there is increased interest about study mechanisms and changes evocated by oxidative stress. Despite the highly oxidizing environment (21% oxygen, at sea level), at normal conditions, the cell cytoplasm of all aerobic organisms is reduced and proteins contain free sulfhydryl groups. In the cytoplasm, two major systems were identificated responsible for maintaining a reduced state: thioredoxin and glutathione/glutaredoxin system. Thioredoxin in bacteria, thanks to the low redox potential is the major dithiol reductant in the cytosol, or an advanced equivalent to dithiothreitol of cells (Holmgren 1985). Thioredoxin system acts the dominant role in many physiological processes (see below) and it is also a cell antioxidant.  相似文献   

14.
Metabolic syndrome is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Metabolic syndrome is often characterized by oxidative stress, a condition in which an imbalance results between the production and inactivation of reactive oxygen species. Reactive oxygen species can best be described as double-edged swords; while they play an essential role in multiple physiological systems, under conditions of oxidative stress, they contribute to cellular dysfunction. Oxidative stress is thought to play a major role in the pathogenesis of a variety of human diseases, including atherosclerosis, diabetes, hypertension, aging, Alzheimer's disease, kidney disease and cancer. The purpose of this review is to discuss the role of oxidative stress in metabolic syndrome and its major clinical manifestations (namely coronary artery disease, hypertension and diabetes). It will also highlight the effects of lifestyle modification in ameliorating oxidative stress in metabolic syndrome. Discussion will be limited to human data.  相似文献   

15.
Liu XJ  Yang W  Qi JS 《生理学报》2012,64(1):87-95
Alzheimer's disease (AD) has become one of the most important and most interesting focuses in the field of medical and scientific research. Up to now, the pathogenesis of AD has not been completely clarified. However, the high-density of amyloid β-protein (Aβ) in senile plaques of AD brain and the neurotoxicity of Aβ have been indisputable facts. The mechanisms underlying Aβ neurotoxicity are very complicated, involving calcium overload, inflammation, ion channel dysfunction, oxidative stress and so on. Among all of those, the mechanism of oxidative stress in Aβ neurotoxicity and the experimental progress of antioxidants in AD treatment have been widely reported in recent years. This review mainly discussed current research progresses on the oxidative stress of Aβ, so as to provide readers with some clues to the antioxidant therapy of AD.  相似文献   

16.
Oxidative insults, whether over-excitation, excessive release of glutamate or ATP caused by stroke, ischemia or inflammation, exposure to ionizing radiation, heavy-metal ions or oxidized lipoproteins may initiate various signaling cascades leading to apoptotic cell death and neurodegenerative disorders. Among the various reactive oxygen species (ROS) generated in the living organism, hydroxyl and peroxynitrite are the most potent and can damage proteins, lipids and nucleic acids. It appears that some natural antioxidants (tocopherol, ascorbic acid and glutathione) and defense enzyme systems (superoxide dismutase, catalase and glutathione peroxidase) may provide some protection against oxidative damage. Recent findings indicate several polyphenols and antioxidant drugs (probucol, seligilline) are effective in protecting the cells from ROS attack. Further development of these antioxidant molecules may be of value in preventing the development of neurodegenerative diseases.  相似文献   

17.
18.
Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory/interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis is not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria/NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways is examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

19.
Many metals and metal-containing compounds have been identified to be potent mutagens and carcinogens. Recently, a new sub-discipline of molecular toxicology and carcinogenesis has been developed. The combination of newly developed molecular techniques and free radical approach makes it possible to insightfully examine metal-induced carcinogenesis in precise molecular terms so that intricate biological interrelationships can be elucidated. In consideration of the increased amount of new findings deciphered by utilizing these new methods, the 1st Conference on Molecular Mechanisms of Metal Toxicity and Carcinogenesis was held. In this conference, more than 50 scientists from nine countries presented their novel discoveries concerning metal-induced carcinogenesis, delineated molecular mechanism of metal carcinogenesis, and proposed novel therapeutic intervention and prevention strategies. This article reviewes some of the state-of-the-art information presented at the meeting regarding the molecular mechanisms of metal cytotoxicity and carcinogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号