首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal-induced oxidative stress and signal transduction   总被引:1,自引:0,他引:1  
  相似文献   

2.
Signaling by carcinogenic metals and metal-induced reactive oxygen species   总被引:10,自引:0,他引:10  
Harris GK  Shi X 《Mutation research》2003,533(1-2):183-200
  相似文献   

3.
4.
Chronic exposure to many heavy metals and metal-derivatives is associated with an increased risk of cancer, although the mechanisms of tumorigenesis are largely unknown. Approximately 125 scientists attended the 3rd Conference on Molecular Mechanisms of Metal Toxicity and Carcinogenesis and presented the latest research concerning these mechanisms. Major areas of focus included exposure assessment and biomarker identification, roles of ROS and antioxidants in carcinogenesis, mechanisms of metal-induced DNA damage, metal signalling, and the development of animal models for use in metal toxicology studies. Here we highlight some of the research presented, and summarize the conference proceedings.  相似文献   

5.
Oxidative stress and apoptosis in metal ion-induced carcinogenesis   总被引:12,自引:0,他引:12  
Epidemiological evidence suggests that exposure to certain metals causes carcinogenesis. The mechanisms of metal-induced carcinogenesis have been pursued in chemical, biochemical, cellular, and animal models. Significant evidence has accumulated that oxidative stress may be a common pathway in cellular responses to exposure to different metals. For example, in the last few years evidence in support of a correlation between the generation of reactive oxygen species, DNA damage, tumor promotion, and arsenic exposure has strengthened. This article summarizes the current literature on metal-mediated oxidative stress, apoptosis, and their relation to metal-mediated carcinogenesis, concentrating on arsenic and chromium.  相似文献   

6.
Oxidation reactions represent an important degradation pathway of nucleic acid-based pharmaceuticals. To evaluate the role of metal contamination and chelating agents in the formation of reactive oxygen species (ROS) during lyophilization, ROS generation and the stability of lipid/DNA complexes were investigated. Trehalose-containing formulations were lyophilized with different levels of transition metals. ROS generation was examined by adding proxyl fluorescamine to the formulations prior to freeze-drying. Results show that ROS were generated during lyophilization, and both supercoil content and transfection rates decreased as the levels of metal-induced ROS increased. The experiments incorporating chelators demonstrated that some of these agents (e.g., DTPA, desferal) clearly suppress ROS generation, while others (e.g., EDTA) enhance ROS. Surprisingly, there was not a strong correlation of ROS generated in the presence of chelators with the maintenance of supercoil content. In this study, we demonstrated the adverse effects of the presence of metals (especially Fe2+) in nonviral vector formulations. While some chelators attenuate ROS generation and preserve DNA integrity, the effects of these additives on vector stability during lyophilization are difficult to predict. Further study is needed to develop potent formulation strategies that inhibit ROS generation and DNA degradation during lyophilization and storage.  相似文献   

7.
Metal-induced apoptosis: mechanisms   总被引:21,自引:0,他引:21  
Pulido MD  Parrish AR 《Mutation research》2003,533(1-2):227-241
The past decade has seen an intense focus on mechanisms of apoptosis. Many important observations on the various signaling pathways mediating apoptotic cell death have been made and our understanding of the importance of apoptosis in both normal growth and development and pathophysiology has greatly increased. In addition, mechanisms of metal-induced toxicity continue to be of interest given the ubiquitous nature of these contaminants. The purpose of this review is to summarize our current understanding of the apoptotic pathways that are initiated by metals, mainly established (arsenic, cadmium, chromium, nickel, beryllium) and possible (lead, antimony, cobalt) human carcinogens. Increased understanding of metal-induced apoptosis is critical to illuminate mechanisms of metal-induced carcinogenesis, as well as the potential of metal species (arsenic) as chemotherapeutic agents.  相似文献   

8.
Oxidation reactions represent an important degradation pathway of nucleic acid-based pharmaceuticals. To evaluate the role of metal contamination and chelating agents in the formation of reactive oxygen species (ROS) during lyophilization, ROS generation and the stability of lipid/DNA complexes were investigated. Trehalose-containing formulations were lyophilized with different levels of transition metals. ROS generation was examined by adding proxyl fluorescamine to the formulations prior to freeze-drying. Results show that ROS were generated during lyophilization, and both supercoil content and transfection rates decreased as the levels of metal-induced ROS increased. The experiments incorporating chelators demonstrated that some of these agents (e.g., DTPA, desferal) clearly suppress ROS generation, while others (e.g., EDTA) enhance ROS. Surprisingly, there was not a strong correlation of ROS generated in the presence of chelators with the maintenance of supercoil content. In this study, we demonstrated the adverse effects of the presence of metals (especially Fe(2+)) in nonviral vector formulations. While some chelators attenuate ROS generation and preserve DNA integrity, the effects of these additives on vector stability during lyophilization are difficult to predict. Further study is needed to develop potent formulation strategies that inhibit ROS generation and DNA degradation during lyophilization and storage.  相似文献   

9.
Although it is widely accepted that chronic exposure to arsenite, nickel, chromium and cadmium increases cancer incidence in individuals, the molecular mechanisms underlying their ability to transform cells remain largely unknown. Carcinogenic metals are typically weak mutagens, suggesting that genetic-based mechanisms may not be primarily responsible for metal-induced carcinogenesis. Growing evidence shows that environmental metal exposure involves changes in epigenetic marks, which may lead to a possible link between heritable changes in gene expression and disease susceptibility and development. Here, we review recent advances in the understanding of metal exposure affecting epigenetic marks and discuss establishment of heritable gene expression in metal-induced carcinogenesis.Key words: environmental metal, epigenetic, metal carcinogenesis, histone modification, DNA methylation, chromatin, gene expression  相似文献   

10.
《Epigenetics》2013,8(7):820-827
Although it is widely accepted that chronic exposure to arsenite, nickel, chromium and cadmium increases cancer incidence in individuals, the molecular mechanisms underlying their ability to transform cells remain largely unknown. Carcinogenic metals are typically weak mutagens, suggesting that genetic-based mechanisms may not be primarily responsible for metal-induced carcinogenesis. Growing evidence shows that environmental metal exposure involves changes in epigenetic marks, which may lead to a possible link between heritable changes in gene expression and disease susceptibility and development. Here, we review recent advances in the understanding of metal exposure affecting epigenetic marks and discuss establishment of heritable gene expression in metal-induced carcinogenesis.  相似文献   

11.
Many metals and metal-containing compounds have been identified to be potent mutagens and carcinogens. Recently, a new sub-discipline of molecular toxicology and carcinogenesis has been developed. The combination of newly developed molecular techniques and free radical approach makes it possible to insightfully examine metal-induced carcinogenesis in precise molecular terms so that intricate biological interrelationships can be elucidated. In consideration of the increased amount of new findings deciphered by utilizing these new methods, the 1st Conference on Molecular Mechanisms of Metal Toxicity and Carcinogenesis was held. In this conference, more than 50 scientists from nine countries presented their novel discoveries concerning metal-induced carcinogenesis, delineated molecular mechanism of metal carcinogenesis, and proposed novel therapeutic intervention and prevention strategies. This article reviewes some of the state-of-the-art information presented at the meeting regarding the molecular mechanisms of metal cytotoxicity and carcinogenesis.  相似文献   

12.
It is well known that some of the heavy metals have a hemolytic action, but the mechanisms responsible for this effect are not well established. In order to elucidate whether or not the hemolytic action of heavy metal ions is associated with the peroxidation of membrane lipids, the relationship between metal-induced hemolysis and the generation of malonaldehyde has been studied.The results obtained show that metal-induced hemolysis is associated with the development of peroxidative processes in erythrocyte membranes. The peroxidation is caused by metals with and without pro-oxidant catalytic action. The level of the malonaldehyde products rises before the appearance of hemolysis which proves that the development of peroxidative processes precedes but does not result from hemolysis.The suggestion has been made that the peroxidation of membrane lipids is a possible mechanism of damage to the red cell membrane in metal-induced hemolysis.  相似文献   

13.
A wide variety of metals have been reported to act as mutagenic and carcinogenic agents in both human and animal studies. The underlying mechanisms are being extensively investigated. Recently, a new sub-discipline of molecular carcinogenesis has surfaced and new techniques and instruments are being developed which allow exploration of the complex biological relationships and signaling pathways involved in response to metal exposure at the molecular level. The 2nd Conference on Molecular Mechanisms of Metal Toxicity and Carcinogenesis was held at NIOSH in Morgantown, West Virginia, Sept. 8-11, 2002. One hundred thirty scientist from sixteen countries presented their novel findings and investigations of metal-induced carcinogenesis. The conference focused on state-of-the-art research and developments in metal toxicity and carcinogenesis. Emphasis was placed on delineating molecular mechanisms involved in free radical effects, cellular uptake, signaling pathways/interaction, dose response, biomarkers, and resistance mechanisms. This article reviews some of the novel information presented at the conference and discusses future avenues of research in this field.  相似文献   

14.
Exposure to toxic and carcinogenic metals is widespread; however, their mechanisms of action remain largely unknown. One potential mechanism for metal-induced carcinogenicity and toxicity is centrosome amplification. Here we review the mechanisms for metal-induced centrosome amplification, including arsenic, chromium, mercury and nano-titanium dioxide.  相似文献   

15.
We reviewed the mechanism of oxidative DNA damage with reference to metal carcinogenesis and metal-mediated chemical carcinogenesis. On the basis of the finding that chromium (VI) induced oxidative DNA damage in the presence of hydrogen peroxide (H2O2), we proposed the hypothesis that endogenous reactive oxygen species play a role in metal carcinogenesis. Since then, we have reported that various metal compounds, such as cobalt, nickel, and ferric nitrilotriacetate, directly cause site-specific DNA damage in the presence of H2O2. We also found that carcinogenic metals could cause DNA damage through indirect mechanisms. Certain nickel compounds induced oxidative DNA damage in rat lungs through inflammation. Endogenous metals, copper and iron, catalyzed ROS generation from various organic carcinogens, resulting in oxidative DNA damage. Polynuclear compounds, such as 4-aminobiphenyl and heterocyclic amines, appear to induce cancer mainly through DNA adduct formation, although their N-hydroxy and nitroso metabolites can also cause oxidative DNA damage. On the other hand, mononuclear compounds, such as benzene metabolites, caffeic acid, and o-toluidine, should express their carcionogenicity through oxidative DNA damage. Metabolites of certain carcinogens efficiently caused oxidative DNA damage by forming NADH-dependent redox cycles. These findings suggest that metal-mediated oxidative DNA damage plays important roles in chemical carcinogenesis.  相似文献   

16.
Kang GS  Li Q  Chen H  Costa M 《Mutation research》2006,610(1-2):48-55
Several metals are carcinogenic but little is known about the mechanisms by which they cause cancer. A pathway that may contribute to metal ion induced carcinogenesis is by hypoxia signaling, which involves a disruption of cellular iron homeostasis by competition with iron transporters or iron-regulated enzymes. To examine the involvement of iron in the hypoxia signaling activity of these metal ions we investigated HIF-1alpha protein stabilization, IRP-1 activity, and ferritin protein levels in human lung carcinoma A459 cells exposed to various agents in serum- and iron-free salt-glucose medium (SGM) or in normal complete medium. We also studied the effects of excess exogenous iron on these responses induced by nickel ion exposure. Our results show the following: (1) SGM enhanced metals-induced HIF-1alpha stabilization and IRP-1 activation (e.g., nickel and cobalt ions). (2) If SGM was reconstituted with a slight excess level (25 microM of FeSO(4)) of iron, this enhancing ability was significantly decreased. (3) The effect of a high level of exogenous iron (500 microM of FeSO(4)) on metal-induced hypoxia and iron metabolism was highly dependent on the order of addition. If treatment with the Fe and metal ions was simultaneous (co-treatment), the effects of nickel ion exposure were overwhelmed, since the added Fe reversed HIF-1alpha stabilization, decreased IRP-1 activity, and increased ferritin level. Pre-treatment with iron was not able to reverse the responses caused by nickel ion exposure. These results imply that it is important to consider the available iron concentration and suitable exposure design when studying metal-induced hypoxia or metal-induced disruption of Fe homeostasis.  相似文献   

17.
The diabetogenic effects of metals including lead (Pb), mercury (Hg), cadmium (Cd), and molybdenum (Mo) have been reported with poorly identified underlying mechanisms. The current study assessed the effect of metals on the roles of oxidative stress, apoptosis, and inflammation in beta pancreatic cells isolated from CD-1 mice, via different biochemical assays. Data showed that the tested metals were cytotoxic to the isolated cells with impaired glucose stimulated insulin secretion (GSIS). This was associated with increased reactive oxygen species (ROS) production, lipid peroxidation, antioxidant enzymes activities, active proapoptotic caspase-3 (cas-3), inflammatory cytokines interleukin–6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels in the intoxicated cells. Furthermore, antioxidant-reduced glutathione (GSH-R), cas-3 inhibitor z-VAD-FMK, IL-6 inhibitor bazedoxifene (BZ), and TNF-α inhibitor etanercept (ET) were found to significantly decrease metal-induced cytotoxicity with improved GSIS in metals’ intoxicated cells. In conclusion, oxidative stress, apoptosis, and inflammation can play roles in metals–induced diabetogenic effect.  相似文献   

18.
Several metals are carcinogenic but little is known about the mechanisms by which they cause cancer. A pathway that may contribute to metal ion induced carcinogenesis is by hypoxia signaling, which involves a disruption of cellular iron homeostasis by competition with iron transporters or iron-regulated enzymes. To examine the involvement of iron in the hypoxia signaling activity of these metal ions we investigated HIF-1α protein stabilization, IRP-1 activity, and ferritin protein levels in human lung carcinoma A459 cells exposed to various agents in serum- and iron-free salt–glucose medium (SGM) or in normal complete medium. We also studied the effects of excess exogenous iron on these responses induced by nickel ion exposure. Our results show the following: (1) SGM enhanced metals-induced HIF-1α stabilization and IRP-1 activation (e.g., nickel and cobalt ions). (2) If SGM was reconstituted with a slight excess level (25 μM of FeSO4) of iron, this enhancing ability was significantly decreased. (3) The effect of a high level of exogenous iron (500 μM of FeSO4) on metal-induced hypoxia and iron metabolism was highly dependent on the order of addition. If treatment with the Fe and metal ions was simultaneous (co-treatment), the effects of nickel ion exposure were overwhelmed, since the added Fe reversed HIF-1α stabilization, decreased IRP-1 activity, and increased ferritin level. Pre-treatment with iron was not able to reverse the responses caused by nickel ion exposure. These results imply that it is important to consider the available iron concentration and suitable exposure design when studying metal-induced hypoxia or metal-induced disruption of Fe homeostasis.  相似文献   

19.
Alpha-synuclein and the pathogenesis of Parkinson's disease   总被引:2,自引:0,他引:2  
Lesions known as Lewy bodies (LBs) and Lewy neurites (LNs) characterise brains of Parkinson's disease (PD) patients. Intracellular aggregation of alpha-synuclein (alpha-syn) appears to play a key role in the generation of LBs and LNs. Such aggregation in the presence of redox metals may initiate Fenton reaction-mediated generation of reactive oxygen species (ROS). ROS thus generated may result in cytotoxic mechanisms such as the induction of DNA single-strand breaks.  相似文献   

20.
Being unable to move away from their places of germination, in order to avoid excess metal-induced damages, plants have to evolve different strategies and complex regulatory mechanisms to survive harsh conditions. While both ROS and auxin are documented to be important in plant response to metal stress, the mechanisms underlying the crosstalk between ROS and auxin in metal stress are poorly understood. In this review, we provide an update on the regulation of plant responses to metal-stress by ROS and auxin signaling pathways, primarily, with a focus on the copper, aluminum and cadmium stress. We aim at surveying the mechanisms underlying how metal stress modulates the changes in auxin distribution and the network of ROS and auxin in plant response to metal stress based on recent studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号