首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu YQ  Hu XY  Lu T  Cheng YN  Young CY  Yuan HQ  Lou HX 《PloS one》2012,7(5):e38000
Previously, we reported that retigeric acid B (RB), a natural pentacyclic triterpenic acid isolated from lichen, inhibited cell growth and induced apoptosis in androgen-independent prostate cancer (PCa) cells. However, the mechanism of action of RB remains unclear. In this study, we found that using PC3 and DU145 cells as models, RB inhibited phosphorylation levels of IκBα and p65 subunit of NF-κB in a time- and dosage-dependent manner. Detailed study revealed that RB blocked the nuclear translocation of p65 and its DNA binding activity, which correlated with suppression of NF-κB-regulated proteins including Bcl-2, Bcl-x(L), cyclin D1 and survivin. NF-κB reporter assay suggested that RB was able to inhibit both constitutive activated-NF-κB and LPS (lipopolysaccharide)-induced activation of NF-κB. Overexpression of RelA/p65 rescued RB-induced cell death, while knockdown of RelA/p65 significantly promoted RB-mediated inhibitory effect on cell proliferation, suggesting the crucial involvement of NF-κB pathway in this event. We further analyzed antitumor activity of RB in in vivo study. In C57BL/6 mice carrying RM-1 homografts, RB inhibited tumor growth and triggered apoptosis mainly through suppressing NF-κB activity in tumor tissues. Additionally, DNA microarray data revealed global changes in the gene expression associated with cell proliferation, apoptosis, invasion and metastasis in response to RB treatment. Therefore, our findings suggested that RB exerted its anti-tumor effect by targeting the NF-κB pathway in PCa cells, and this could be a general mechanism for the anti-tumor effect of RB in other types of cancers as well.  相似文献   

2.
Dendritic cells (DC) are antigen-presenting cells essential for initiating primary immune responses and therefore an ideal target for viral immune evasion. Varicella-zoster virus (VZV) can productively infect immature human DCs and impair their function as immune effectors by inhibiting their maturation, as evidenced by the expression modulation of functionally important cell surface immune molecules CD80, CD86, CD83, and major histocompatibility complex I. The NF-κB pathway largely regulates the expression of these immune molecules, and therefore we sought to determine whether VZV infection of DCs modulates the NF-κB pathway. Nuclear localization of NF-κB p50 and p65 indicates pathway activation; however, immunofluorescence studies revealed cytoplasmic retention of these NF-κB subunits in VZV-infected DCs. Western blotting revealed phosphorylation of the inhibitor of κBα (IκBα) in VZV-infected DCs, indicating that the pathway is active at this point. We conclude that VZV infection of DC inhibits the NF-κB pathway following protein phosphorylation but before the translocation of NF-κB subunits into the nucleus. An NF-κB reporter assay identified VZV open reading frame 61 (ORF61) as an inhibitor of tumor necrosis factor alpha-induced NF-κB reporter activity. Mutational analysis of ORF61 identified the E3 ubiquitin ligase domain as a region required for NF-κB pathway inhibition. In summary, we provide evidence that VZV inhibits the NF-κB signaling pathway in human DCs and that the E3 ubiquitin ligase domain of ORF61 is required to modulate this pathway. Thus, this work identifies a mechanism by which VZV modulates host immune function.  相似文献   

3.
Constitutive activation of NF-κB signaling is a key event in virus- and non-virus-induced carcinogenesis. We have previously reported that cutaneous human papillomavirus type 38 (HPV38) displays transforming properties in in vitro and in vivo experimental models. However, the involvement of NF-κB signaling in HPV38-induced cell growth transformation remains to be determined. In this study, we showed that HPV38 E6 and E7 activate NF-κB and that inhibition of the pathway with the IκBα superrepressor sensitizes HPV38E6E7-immortalized human keratinocytes to tumor necrosis factor alpha (TNF-α)- and UVB radiation-mediated apoptosis. Accordingly, inhibition of NF-κB signaling resulted in the downregulation of NF-κB-regulated antiapoptotic genes, including cIAP1, cIAP2, and xIAP genes. These findings demonstrate a critical role of NF-κB activity in the survival of HPV38E6E7-immortalized human keratinocytes exposed to cytokine or UV radiation. Our data provide additional evidence for cooperation between beta HPV infection and UV irradiation in skin carcinogenesis.  相似文献   

4.
An evaluation of Indonesian plants to identify compounds with immune modulating activity revealed that the methanolic extract of an Alphonsea javanica Scheff specimen possessed selective anti-inflammatory activity in a nuclear factor-kappa B (NF-κB) luciferase and MTT assay using transfected macrophage immune (Raw264.7) cells. A high-throughput LC/MS-ELSD based library approach of the extract in combination with the NF-κB and MTT assays revealed the styryl lactone (+)-altholactone (2) was responsible for the activity. Compound 2, its acetylated derivate (+)-3-O-acetylaltholactone (3), and the major compound of this class, (+)-goniothalmin (1), were further evaluated to determine their anti-inflammatory potential in the NF-κB assay. Concentration–response studies of 13 indicated that only 2 possessed NF-κB based anti-inflammatory activity. Compound 2 reduced the LPS-induced NO production, phosphorylation of IκBα, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) using Western blot analysis. Further studies using qPCR indicated 2 reduced the expression of eight pro-inflammatory cytokines/enzymes (0.8–5.0 μM) which included: COX-2, iNOS, IP-10, IL-1β, MCP-1, GCS-F, IL-6 and IFN-β. These results indicated that 2 displays broad spectrum immune modulating activity by functioning as an anti-inflammatory agent against LPS-induced NF-κB signaling. Conversely the selective cytotoxicity and in vivo anti-tumor and anti-inflammatory activity previously reported for 1 do not appear to arise from a mechanism that is linked to the NF-κB immune mediated pathway.  相似文献   

5.
Neonates with intrauterine growth retardation (IUGR) are susceptible to decreases in cellular immunity. In recent years, a growing body of evidence indicates that Hsp70 may serve as a danger signal to the innate immune system and promote receptor-mediated apoptosis. Using neonatal pigs with IUGR, we investigated immune function of pigs and expression of heat shock protein 70 (Hsp70), nuclear factor-kappa B (NF-κB), and forkhead box O 3a (FoxO3a) in the intestinal tract. Samples from the blood, duodenum, jejunum, and ileum of normal body weight (NBW) piglets and IUGR piglets were collected at day 7 after birth. Furthermore, to test whether Hsp70 is associated with regulation of NF-κB and FoxO3a, Hsp70 was silenced using small RNA interference (siRNA) in IEC-6 cells. Body and intestinal weights were lower in IUGR piglets than in NBW piglets (p?相似文献   

6.
Human epidermal growth factor receptor 2 (HER2/neu, also known as ErbB2) overexpression is correlated with the poor prognosis and chemoresistance in cancer. Breast cancer resistance protein (BCRP and ABCG2) is a drug efflux pump responsible for multidrug resistance (MDR) in a variety of cancer cells. HER2 and BCRP are associated with poor treatment response in breast cancer patients, although the relationship between HER2 and BCRP expression is not clear. Here, we showed that transfection of HER2 into MCF7 breast cancer cells (MCF7/HER2) resulted in an up-regulation of BCRP via the phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B (NF-κB) signaling. Treatment of MCF/HER2 cells with the PI3K inhibitor LY294002, the IκB phosphorylation inhibitor Bay11-7082, and the dominant negative mutant of IκBα inhibited HER2-induced BCRP promoter activity. Furthermore, we found that HER2 overexpression led to an increased resistance of MCF7 cells to multiple antitumor drugs such as paclitaxel (Taxol), cisplatin (DDP), etoposide (VP-16), adriamycin (ADM), mitoxantrone (MX), and 5-fluorouracil (5-FU). Moreover, silencing the expression of BCRP or selectively inhibiting the activity of Akt or NF-κB sensitized the MCF7/HER2 cells to these chemotherapy agents at least in part. Taken together, up-regulation of BCRP through PI3K/AKT/NF-κB signaling pathway played an important role in HER2-mediated chemoresistance of MCF7 cells, and AKT, NF-κB, and BCRP pathways might serve as potential targets for therapeutic intervention.  相似文献   

7.
8.
20-Hydroxyecdysone (20E) is known to have numerous pharmacological activities and can be used to treat diabetes and cardiovascular diseases. However, the protective effects of 20E against endothelial dysfunction and its targets remain unclear. In the present study, we revealed that 20E treatment could modulate the release of the endothelium-derived vasomotor factors NO, PGI2 and ET-1 and suppress the expression of ACE in TNF-α-induced 3D-cultured HUVECs. In addition, 20E suppressed the expression of CD40 and promoted the expression of SIRT6 in TNF-α-induced 3D-cultured HUVECs. The cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and molecular docking results demonstrated that 20E binding increased SIRT6 stability, indicating that 20E directly bound to SIRT6 in HUVECs. Further investigation of the underlying mechanism showed that 20E could upregulate SIRT6 levels and that SIRT6 knockdown abolished the regulatory effect of 20E on CD40 in TNF-α-induced HUVECs, while SIRT6 overexpression further improved the effect of 20E. Moreover, we found that 20E could reduce the acetylation of NF-κB p65 (K310) through SIRT6, but the catalytic inactive mutant SIRT6 (H133Y) did not promote the deacetylation of NF-κB p65, suggesting that the inhibitory effect of 20E on NF-κB p65 was dependent on SIRT6 deacetylase activity. Additionally, our results indicated that 20E inhibited NF-κB via SIRT6, and the expression of CD40 was increased in HUVECs treated with SIRT6 siRNA and NF-κB inhibitor. In conclusion, the present study demonstrates that 20E exerts its effect through SIRT6-mediated deacetylation of NF-κB p65 (K310) to inhibit CD40 expression in ECs, and 20E may have therapeutic potential for the treatment of cardiovascular diseases.  相似文献   

9.
Elevated Nuclear Factor κB (NF-κB) levels have been reported in multiple myeloma cells derived from patients relapsing after chemotherapy. In the search of an in vitro a model with molecular features similar to relapsing lesions, we focused our attention on an IL-6 autocrine human myeloma cell line (U266), characterized by apoptosis resistance due to up-regulation of two constitutive signaling pathways: NF-κB and STAT-3. NF-κB activity was inhibited with proteasome inhibitory agents, such as PS-341 and Withaferin A, with an IKK inhibitor (Wedelolactone) or with the adenoviral vector HD IκBαmut-IRES-EGFP encoding a mutant IκBα protein, resistant to proteasomal degradation. We observed that the NF-κB intracellular dislocation at the beginning of the treatment affected therapeutic effectiveness of PS-341, Withaferin A and Wedelolactone; interestingly, the adenoviral vector was highly effective in inducing apopotosis even with NF-κB being predominantly nuclear at the time of infection. We also observed that U266 treated with the Interleukin-6 antagonist Sant7 exhibited reduced STAT3 activity and preferential cytoplasmic NF-κB location; moreover they became capable of undergoing apoptosis mainly from the G1 phase. Adenoviral vector treated U266 have NF-κB localized completely in the cytoplasm and also showed down-regulation of nuclear phospho STAT-3. Finally, combined targeting of NF-κB and STAT3 signaling pathways was the most effective treatment in inducing apoptosis. These findings suggest that combined NF-κB κB and STAT3 targeting warrants further investigations in other apoptosis resistant MM cell lines as well as in suitable MM animal models.  相似文献   

10.
We have identified the E3 ligase Traf7 as a direct MyoD1 target and show that cell cycle exit-an early event in muscle differentiation-is linked to decreased Traf7 expression. Depletion of Traf7 accelerates myogenesis, in part through downregulation of nuclear factor-κB (NF-κB) activity. We used a proteomic screen to identify NEMO, the NF-κB essential modulator, as a Traf7-interacting protein. Finally, we show that ubiquitylation of NF-κB essential modulator is regulated exclusively by Traf7 activity in myoblasts. Our results suggest a new mechanism by which MyoD1 function is coupled to NF-κB activity through Traf7, regulating the balance between cell cycle progression and differentiation during myogenesis.  相似文献   

11.
12.
BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has extensively and rapidly spread in the world, causing an outbreak of acute infectious pneumonia. However, no specific antiviral drugs or vaccines can be used. Phillyrin (KD-1), a representative ingredient of Forsythia suspensa, possesses anti-inflammatory, anti-oxidant, and antiviral activities. However, little is known about the antiviral abilities and mechanism of KD-1 against SARS-CoV-2 and human coronavirus 229E (HCoV-229E).PurposeThe study was designed to investigate the antiviral and anti-inflammatory activities of KD-1 against the novel SARS-CoV-2 and HCoV-229E and its potential effect in regulating host immune response in vitro.MethodsThe antiviral activities of KD-1 against SARS-CoV-2 and HCoV-229E were assessed in Vero E6 cells using cytopathic effect and plaque-reduction assay. Proinflammatory cytokine expression levels upon infection with SARS-CoV-2 and HCoV-229E infection in Huh-7 cells were measured by real-time quantitative PCR assays. Western blot assay was used to determine the protein expression of nuclear factor kappa B (NF-κB) p65, p-NF-κB p65, IκBα, and p-IκBα in Huh-7 cells, which are the key targets of the NF-κB pathway.ResultsKD-1 could significantly inhibit SARS-CoV-2 and HCoV-229E replication in vitro. KD-1 could also markedly reduce the production of proinflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1, and IP-10) at the mRNA levels. Moreover, KD-1 could significantly reduce the protein expression of p-NF-κB p65, NF-κB p65, and p-IκBα, while increasing the expression of IκBα in Huh-7 cells.ConclusionsKD-1 could significantly inhibit virus proliferation in vitro, the up-regulated expression of proinflammatory cytokines induced by SARS-CoV-2 and HCoV-229E by regulating the activity of the NF-кB signaling pathway. Our findings indicated that KD-1 protected against virus attack and can thus be used as a novel strategy for controlling the coronavirus disease 2019.  相似文献   

13.
14.
15.
16.
17.
Nuclear factor-kappa B (NF-κB) is a critical regulator of multiple biological functions including innate and adaptive immunity and cell survival. Activation of NF-κB is tightly regulated to preclude chronic signaling that may lead to persistent inflammation and cancer. Ubiquitination of key signaling molecules by E3 ubiquitin ligases has emerged as an important regulatory mechanism for NF-κB signaling. Deubiquitinases (DUBs) counteract E3 ligases and therefore play a prominent role in the downregulation of NF-κB signaling and homeostasis. Understanding the mechanisms of NF-κB downregulation by specific DUBs such as A20 and CYLD may provide therapeutic opportunities for the treatment of chronic inflammatory diseases and cancer.  相似文献   

18.
19.
The nuclear factor-κB (NF-κB) plays an important role in inflammatory and immune responses. Aberrant NF-κB signaling is implicated in multiple disorders, including cancer. Targeting the regulatory scaffold subunit IκB kinase γ (IKKγ/NEMO) as therapeutic interventions could be promising due to its specific involvement in canonical NF-κB activation without interfering with non-canonical signaling. In this study, the use of unnatural amino acid substituted IKKβ with unique photophysical activity to sense water environment changes upon interaction with NEMO provides a powerful in vitro screening platform that would greatly facilitate the identification of compounds having the potential to disrupt IKKβ-NEMO interaction, and thus specifically modulate the canonical NF-κB pathway. We then utilized a competitive binding platform to screen the binding ability of a number of potential molecules being synthesized. Our results suggest that a lead compound (−)-PDC-099 is a potent agent with ascertained potency to disrupt IKKβ-NEMO complex for modulating NF-κB canonical pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号