首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Photoperiodic phenological adaptations are prevalent in many organisms living in seasonal environments. As both photoperiod and growth season length change with latitude, species undergoing latitudinal range expansion often need to synchronize their life cycle with a changing photoperiod and growth season length. Since adaptive synchronization often involves a large number of time-consuming genetic changes, behavioural plasticity might be a faster way to adjust to novel conditions. We compared behavioural and physiological traits in overwintering (diapause) preparation in three latitudinally different European Colorado potato beetle (Leptinotarsa decemlineata) populations reared under two photoperiods. Our aim was to study whether behavioural plasticity could play a role in rapid range expansion into seasonal environments. Our results show that while burrowing into the soil occurred in the southernmost studied population also under a non-diapause-inducing long photoperiod, the storage lipid content of these beetles was very low compared to the northern populations. However, similar behavioural plasticity was not found in the northern populations. Furthermore, the strongest suppression of energy metabolism was seen in pre-diapause beetles from the northernmost population. These results could indicate accelerated diapause preparation and possibly energetic adjustments due to temporal constraints imposed by a shorter, northern, growth season. Our results indicate that behavioural plasticity in burrowing may have facilitated initial range expansion of L. decemlineata in Europe. However, long-term persistence at high latitudes has required synchronization of burrowing behaviour with physiological traits. The results underline that eco-physiological life-history traits of insects, such as diapause, should be included in studies on range expansion.  相似文献   

3.
Reproductive diapause is a primary mechanism used by arthropods to synchronize their life cycle with seasonal changes in temperate regions. Our study species, Drosophila montana, represents the northern insect species where flies enter reproductive diapause under short day conditions and where the precise timing of diapause is crucial for both survival and offspring production. We have studied clinal variation in the critical day length for female diapause induction (CDL) and their overall susceptibility to enter diapause (diapause incidence), as well as the temperature sensitivity of these traits. The study was performed using multiple strains from four latitudinal clines of the species – short clines in Finland and Alaska and long clines in the Rocky Mountains and the western coast of North America – and from one population in Kamchatka, Russia. CDL showed strong latitudinal clines on both continents, decreasing by one hour per five degrees decline in latitude, on average. CDL also decreased in all populations along with an increase in fly rearing temperature postponing the diapause to later calendar time, the effects of temperature being stronger in southern than in northern population. Female diapause incidence was close to 100% under short day/low temperature conditions in all populations, but decreased below 50% even under short days in 19°C in the southern North American western coast populations and in 22°C in most populations. Comparing a diversity of climatic data for the studied populations showed that while CDL is under a tight photoperiodic regulation linked with latitude, its length depends also on climatic factors determining the growing season length. Overall, the study deepens our understanding of how spatial and environmental parameters affect the seasonal timing of an important biological event, reproductive diapause and helps to estimate the evolutionary potential of insect populations to survive in changing climatic conditions.  相似文献   

4.
Whether alien insects that are introduced into temperate regions adapt to seasonally changing environmental conditions is an important question in evolutionary biology. If rapid evolution has occurred in a non‐native environment, a latitudinal cline in critical photoperiod for diapause induction (i.e., the photoperiod at which half of the individuals enter diapause) and in life cycle synchronization with host plant phenology should be evident among locations. The alien bruchid Acanthoscelides pallidipennis (Motschulsky) (Coleoptera: Bruchidae) is native to North America and introduced into Japan with the host plant Amorpha fruticosa L. (Fabaceae) in the late 1940s. To examine whether seasonal adaptation has occurred in A. pallidipennis, we conducted a laboratory experiment and phenological observations using three latitudinally different populations. We bred F1 eggs at 22 °C and five photoperiodic regimens – L:D = 10:14, 13:11, 14:10, 15:9, or 16:8 hours – and examined whether diapause was induced. The estimated critical photoperiod for diapause induction was longest in the most northern population and shortest in the most southern population. Life cycle was found to be synchronized with host phenology in each location. Also voltinism varied geographically, from univoltine in the northern population to bivoltine in the southern populations. These results showed that A. pallidipennis rapidly adapted to seasonal environmental conditions in Japan after its introduction.  相似文献   

5.
白纹伊蚊卵滞育的实验观察   总被引:2,自引:0,他引:2  
杨振洲 《昆虫学报》1988,(3):287-294
对两个地理品系的白纹伊蚊卵期滞育的实验观察表明:白纹伊蚊宜兴品系(约北纬31°N)不仅亲代受短光照作用后可诱导卵期发生滞育,而且卵期仍具有光照敏感性;海南岛品系(约北纬18°N)中,光期变化不能诱导卵期滞育.宜兴品系卵滞育率随亲代光期缩短而增高的现象只发生在一定范围内(约L:D=9:15到L:D=15:9).卵滞育还受卵期低温、干燥以及孵化时水中溶解氧的影响.卵进入深度滞育是多种环境因素作用的结果.  相似文献   

6.
Overwintering diapause in Helicoverpa armigera, a multivoltine species, is controlled by response to photoperiod and temperature. Photoperiodic responses from 5 different geographical populations showed that the variation in critical photoperiod for diapause induction was positively related to the latitudinal origin of the populations at 20, 22 and 25 °C. Diapause response to photoperiod and temperature was quite different between northern and southern populations, being highly sensitive to photoperiod in northern populations and temperature dependence in southern populations. Diapause pupae from southern population showed a significantly shorter diapause duration than from northern-most populations when they were cultured at 20, 22, 25, 28 and 31 °C; by contrast, overwintering pupae from southern populations emerged significantly later than from northern populations when they were maintained in natural conditions, showing a clinal latitudinal variation in diapause termination. Diapause-inducing temperature had a significant effect on diapause duration, but with a significant difference between southern and northern populations. The higher rearing temperature of 22 °C evoked a more intense diapause than did 20 °C in northern populations; but a less intense diapause in southern population. Cold exposure (chilling) is not necessary to break the pupal diapause. The higher the temperature, the quicker the diapause terminated. Response of diapause termination to chilling showed that northern populations were more sensitive to chilling than southern population.  相似文献   

7.
Photoperiod is a reliable indicator of season and an important cue that many insects use for phenological synchronization. Undergoing range expansion insects can face a change in the local photoperiod to which they need to resynchronize. Rapid range expansion can be associated with rapid photoperiodic adaptation, which can be associated with intense selection on strongly heritable polygenic traits. Alternatively, it is proposed that, in insects with an XO sex‐determination system, genes with large effect residing on the sex chromosome could drive photoperiodic adaptation because the gene or genes are exposed to selection in the sex carrying only a single X‐chromosome. The present study seeks to understand which of these alternatives more likely explains the rapid photoperiodic adaptation in European Colorado potato beetles Leptinotarsa decemlineata Say. Diapause induction is assessed in beetles from a northern and a southern population, as well as from reciprocal hybrid crosses between the northern and southern population, when reared at an intermediate length photoperiod. The crosses within population display the expected responses, with the northern and southern populations showing high and low diapause propensity, respectively. The hybrids show intermediate responses in all studied traits. No clear difference in the responses in hybrids depending on the latitudinal origin of their father or mother is detected, even though partial paternal line dominance is seen in the responses of male beetles in one hybrid cross. These results therefore indicate that, in L. decemlineata, photoperiodic diapause induction is strongly heritable, and has an additive polygenic autosomal background.  相似文献   

8.
Abstract To investigate the seasonal adaptation strategies of Ophraella communa to new habitats, the effects and regulation mechanisms of photoperiod and temperature on the reproductive diapause in a population collected from Changsha, Hunan were examined. Adults showed obvious reproductive diapause, which was regulated by photoperiod and temperature. At 30°C, there was no adult diapause occurring under either long‐day or short‐day conditions; at 25°C the pre‐oviposition period was short and fecundity was high in adult females under L : D 16 : 8 h, whereas under L : D 12 : 12 h, a few females entered reproductive diapause; at 20°C under short‐day conditions, all female adults entered diapause. The pre‐oviposition period was significantly prolonged when the pupae and adults were transferred from long‐days to short‐days, but the day length influence was not obvious when they were transferred only in the adult stage. However, the fecundity dropped greatly no matter whether the photoperiod shifted to short‐days only in the adult stage or whether the shift occurred in both the pupal and adult stage. The fecundity was extremely low when photoperiod shifted from long‐days to short‐days in both pupal and adult stages. This was an indication that the pupal and adult stages were the photoperiod‐sensitive stage for adult reproductive diapause. This was especially true for the photoperiod in the pupal stage, which has a distinctly significant regulative effect on reproductive diapause. Additionally, this article also addresses the reason for different photoperiodic response patterns in reproductive diapause induction between the Changsha strain and the Tsukuba strain (Japan) of O. communa.  相似文献   

9.
Summary

The effect of photoperiod and allatectomy on the rates of oviposition and juvenile hormone (JH) synthesis was studied in female beetles after the break of adult diapause. The results indicate that after diapause, photoperiod has no effect on oviposition rates. However, the photoperiodic effect on diapause induction is restored within a few days after the break of the first diapause. Allatectomy performed within one day after diapause did not induce a second diapause, whereas about 40% of the beetles allatectomized after 3 or more days responded by entering a second diapause. Oogenesis in the operated animals was never completely prevented under long and short day conditions. These preliminary results suggest a change in the sensitivity of post-diapause beetles to photoperiodic and endocrine manipulation as compared with pre-diapause insects.  相似文献   

10.
Larvae of the blow fly Calliphora vicina R-D. (Diptera: Calliphoridae) display a diapause in response to the exposure of their parents to short photoperiods. Due to geographic variation in photoperiodic response, flies from a southern, English population show a long-day response to the fixed photoperiod of L:D 15.5:8.5 whilst flies from a northern population from Finland show a short-day response to the same photoperiod. Crosses between these strains have shown previously that diapause incidence is a maternal characteristic; here we demonstrate that the hybrid female offspring of such crosses are not intermediate between the two parental strains but show a photoperiodic response biased towards their maternal line. Thus not only are males unable to influence directly the diapause incidence among their offspring but the indirect effects of inheritance down the male line are weaker than down the female. Diapause duration, in contrast, is influenced by each parent in a similar manner. Diapause lasts longer in larvae with a greater admixture of northern genes regardless of whether they were maternal or paternal.  相似文献   

11.
We investigated whether interpopulational variation in life-cycle regulation and life-history plasticity, in response to photoperiod, is predictable from considerations of what would be the adaptive life cycle and life history in a given environment. The investigation was performed on five populations of the speckled wood butterfly, Pararge aegeria (L.) (Lepidoptera: Nymphalidae), from central and south Sweden, England, Spain and Madeira. Insects from all five populations were reared at all daylengths from 10 h to 20 h at 17oC. Larval and pupal development times were noted. Predictions were met regarding the type of life-cycle regulation and the shape of reaction norms. Evidence for diapause (larval summer and winter diapause, pupal winter diapause) was found in the three northern populations (P. a. tircis) but not in the two southern populations (P. a. aegeria). Photoperiodic thresholds for diapause induction followed the predicted latitudinal patterns, and this was also the case regarding quantitative regulation of development time (by photoperiod) among directly developing individuals. Under direct development, development time was progressively shorter in shorter daylengms in the two Swedish populations, where this signals progressively later dates. This was not found in the English, Spanish and Madeiran populations where such a response is likely to be maladaptive, because one or more generations of larvae are present before summer solstice. There were also unexpected results, for which we propose preliminary adaptive explanations.  相似文献   

12.
光周期和温度对亚洲玉米螟滞育诱导的影响   总被引:4,自引:0,他引:4  
亚洲玉米螟Ostrinia furnacalis (Guenée)属兼性滞育昆虫, 其滞育特性与种群利用适生境的最大化和季节性活动密切相关。解析季节性因素如光周期和温度对其滞育的诱导作用可为预测种群发生动态提供科学依据。本实验在HPS 500型和HPG-320H型自动控制环境气候箱中, 测定了RH 80%下温度20℃, 27℃和30℃与11个光周期组合对吉林农安(NA)、 河北衡水(HS)、 广东惠州(HZ)和海南海口(HK)等4个地理种群的滞育诱导作用。结果表明: 光周期、 温度及其交互作用均对亚洲玉米螟滞育诱导具有重要影响, 其中光周期在滞育诱导中起主导作用。在20℃条件下, 其光周期反应曲线属典型的长日照反应型, 临界光周期随种群分布的地理纬度降低而缩短, 4个地理种群NA, HS, HZ和HK的临界日昼长依次为14 h 3 min, 13 h 59 min, 13 h 32 min和13 h 7 min, 最有效的滞育诱导光周期是日昼长12 h。另一方面, 随种群分布纬度升高, 其对光周期诱导滞育的敏感性降低。温度为27℃时, 其光周期反应曲线为短日照 长日照反应型, 各种群有两个临界光周期, 临界日昼长依次为12 h 50 min和13 h 32 min, 11 h 35 min和13 h 8 min, 12 h 58 min和13 h 1 min, 以及11 h 50 min和12 h 26 min, 且最有效的滞育诱导光周期范围的滞育率明显低于20℃。一定温度范围内(20℃~27℃), 随温度升高, 临界光周期缩短; 温度达到30℃时则滞育显著被抑制, 滞育率仅为4.3%或更低。这些结果说明温度对亚洲玉米螟滞育的光周期诱导具有很强的补偿作用。因此, 在自然界亚洲玉米螟的滞育属具有温度补偿作用的长日照反应型昆虫, 临界光周期随地理纬度北移而增长; 种群滞育的短日照 长日照反应型特性可能是产生局部世代种群的重要内因。  相似文献   

13.
Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets.  相似文献   

14.
Adelphocoris triannulatus (Stål) (Heteroptera: Miridae) is a zoophytophagous bug that inhabits grasslands and crop fields, and is widely distributed in eastern Asia. In this study, the seasonal occurrence and environmental factors controlling the seasonal life cycle of this bug were investigated in a local population in southern Kyushu, Japan. When insects were reared under different photoperiods at 20 and 25 °C, they produced diapause or nondiapause eggs depending on the photoperiod: when reared under short-day photoperiods (≤?13 h/day), females laid diapause eggs, whereas they laid nondiapause eggs when reared under long-day photoperiods (≥?14 h/day). Because the developmental duration of the pre-adult stages and maturation (minimum duration of one generation) is estimated to be approximately 30 days at summer temperatures, these results suggest that this bug has a multivoltine seasonal life cycle. In agreement with the laboratory results, only nondiapause eggs were produced until mid-August in the field, and an increasing proportion of diapause eggs were produced from early September. In addition to these findings, field sampling from spring to autumn in 2009 indicated that three or four generations were produced in one year. These results suggest that egg diapause plays a role in preventing nymphs of A. triannulatus from developing in winter, and thereby ensures the survival of the population in adverse seasons.  相似文献   

15.
Larvae of the bean blister beetle Epicauta gorhami Marseul (Coleoptera: Meloidae) feed on grasshopper eggs in soil and undergo hypermetamorphosis. This beetle undergoes larval diapause in the fifth instar as a pseudopupa, a form characteristic of hypermetamorphosis in meloid beetles. The effects of temperature, photoperiod and soil humidity on larval development of E. gorhami are examined in a population in Miyazaki, Japan, using egg pods of Locusta migratoria L. as food. At lower temperatures (20 and 22.5 °C), all larvae become pseudopupae, regardless of the photoperiod. By contrast, at higher temperatures (27.5 and 30 °C), almost all larvae pupate at the end of the fourth instar, again regardless of the photoperiod. A long‐day photoperiodic response occurs only at an intermediate temperature (25 °C): under an LD 12 : 12 h photocycle, all larvae enter diapause, although the diapause incidence tends to decrease as the day length becomes longer. Pseudopupae are immobile and remain in diapause for ≥120 days when they are kept under the same conditions, except that diapause terminates within a relatively short time at 30 °C. Although lower soil humidity retards post‐feeding development, soil humidity has no effect on the diapause incidence. On the basis of the short developmental period and diapause avoidance under summer conditions, it is suggested that this beetle partially produces two generations a year in southwestern Japan.  相似文献   

16.
Abstract In order to elucidate the mechanism regulating its seasonal life cycle, the photoperiodic response of Achaearanea tepidariorum has been analysed. Nymphal development was faster in long-day and slower in short-day photoperiods. The combined action of low temperature, poor food supply and short daylength induced diapause at an earlier developmental stage than short days alone. Thus, photoperiod is a primary factor inducing nymphal diapause, but the diapausing instar is influenced by both temperature and food supply. Hibernating nymphs became unresponsive to photoperiod in late December. After hibernation, however, sensitivity was restored and the nymphs remained sensitive to photoperiod throughout their life. This spider could also enter an imaginal or reproductive diapause. Photoperiod was again a primary inducing factor and temperature modified the photoperiodic response to some extent. The induction of the reproductive diapause was almost temperature-compensated whereas development was not. So the involvement of a photoperiodic counter system was suggested. Irrespective of whether the nymph had experienced diapause or not, the imaginal diapause was induced in response to a short-day photoperiod after adult moult. Based on these observations, the seasonal life cycle and the adaptive significance of nymphal and imaginal diapause are discussed.  相似文献   

17.
Abstract. 1. Adult male and female Nebria salina were collected in summer, when in reproductive diapause, and subjected to three different photoperiod regimes, LD 18:6 h, LD 12:12 h, and LD 6:18 h, to assess the role of light regimes on sexual development. 2. Two alternative hypotheses were tested: (i) development rates increase in response to time restriction and (ii) development rate is at a maximum on the day length approximating to that in the field during reproduction. 3. Gonad development was assessed after 1 and 2 months' exposure to the experimental day lengths. In female N. salina, photoperiod and length of time of exposure both influenced reproductive development. Females required at least 2 months' exposure to photoperiods of ≤ LD 12:12 h to mature. Development of the ovary did not take place on LD 18:6 h, irrespective of the length of exposure. Sexual development occurred in all the males after 2 months, irrespective of photoperiod. 4. At the end of the study the activity of the remaining beetles was measured and compared. Significantly higher activity levels were measured in periods of darkness, and consequently beetles exposed to the two shorter day lengths were found to be more active than those kept on the longest photoperiod. Comparing the 3‐h period 06.00 – 09.00, the last 3 h of darkness for all three regimes, activity was significantly higher on LD 12:12 h and LD 6:18 h than on the LD 18:6 h regime. 5. In order to place the experimental studies in context with the life cycle under natural conditions, pitfall traps were used to compare the seasonal activity of N. salina in the field.  相似文献   

18.
Abstract .The blow fly Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae) has a wide distribution across northern and temperate Europe. It has a facultative, maternally-induced larval diapause in response to short days. The photoperiodic response, measured at 15 and 20°C, of two populations was compared. A southern population (originating at 51° N) was sensitive to temperature at all daylengths; the incidence of diapause was greatly reduced at 20°C compared with 15°C. The photoperiodic response of a northern population (from 65° N) was sensitive to temperature only in long days; in short days (< 14 h of light) the response of this strain was identical at each temperature.
Variation in parental photoperiod and temperature were found to affect the duration of larval diapause, indicating a role for maternal effects in diapause intensity as well as incidence. However, the between-strain variation was greater than that within strains, indicating qualitative differences in diapause response. These differences may arise from the ecological conditions at the points of origin of the two strains. The northern strain from the harsher climate has a more intense diapause that follows a relatively temperature-insensitive photoperiodic response. In contrast, the southern strain has a shallow diapause and its photoperiodic response may be overridden by the experience of concurrent high temperature.  相似文献   

19.
The mosquito, Wyeomyia smithii, enters a larval dormancy or diapause that is initiated, maintained, and terminated by photoperiod. The median or critical photoperiod regulating diapause increases from 12 h of light per day along the Gulf of Mexico, USA (30° N), to over 15 h in southern Canada (49° N). Photoperiodic time measurement in W. smithii comprises both rhythmic and hourglass (interval timer) components. Using interrupted-night and resonance experiments, we show that both the rhythmic and hourglass components are prominent in the southern (ancestral) populations and that the influence of the rhythmic component declines with increasing latitude, while the hourglass component remains strong in northern (derived) populations. Previously, it has been shown that the genetic differences in critical photoperiod between northern populations and their southern ancestors involve not only the additive (independent) effects of genes, but also gene-gene interaction (epistasis). We therefore conclude that adaptive evolution of W. smithii has probably involved the progressive epistatic masking of the ancestral rhythmic component resulting in photoperiodic time measurement in northern populations accomplished principally through a day-interval timer. A comparison of W. smithii with previous studies indicates that the decline in critical photoperiod with increasing latitude represents an overall decrease in response to light rather than a shift in the timing of photosensitivity among arthropods in general. We propose that the underlying functional components of photoperiodic time measurement, as well as the overt photoperiodic response, are either homologous or are themselves responding directly to selection over latitudinal gradients in seasonality. Received: 18 May 1998 / Accepted: 14 September 1998  相似文献   

20.
The presence of a reproductive diapause in the life cycle of the neotropical cassidine beetle, Chelymorpha alternans , was investigated by exposing groups of beetles to conditions differing in photoperiod and humidity. Diapause was characterized by the absence of egg-laying in females up to 70 days after emergence and was induced in response to a short photoperiod of 12:12 h L: D but averted under a longer photoperiod of 13:11 h L:D. High (>90% RH) and low (55–75% RH) humidity conditions did not influence diapause induction. Males appeared to court and attempt to mate with females under all conditions between 16 and 30 days after emergence, but declined after this time in short photoperiods and it is not known if matings in these groups were successful. Adults induced to diapause by exposure to a 12:12 h L:D photoperiod and subsequently exposed to a 13:11 h L: D photoperiod 70 or 72 days after emergence did not show a rapid response by commencing egg-laying. However, all diapausing groups in long and short photoperiod and high and low humidity, in both experiments performed, had commenced egg-laying after 128 days, suggesting an endogenous rhythm for diapause termination. Long photoperiod and high humidity combined may hasten diapause termination since egg-laying began after only 95 days in this group in experiment two. This strategy of induction and termination is discussed with reference to the seasonality of the natural environment of C. alternans in Panama.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号