首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillin amidase, alpha-chymotrypsin and urease have been immobilized in water-soluble nonstoichiometric polyelectrolyte complexes (N-PEC). N-PEC are formed by modified poly(N-ethyl-4-vinyl-pyridinium bromide) (polycation) and excess poly(methylacrylic acid) (polyanion). N-PEC are a new class of polymers capable, characteristically, of phase transitions solution in equilibrium precipitate induced by slight change in pH or ionic strength. Neither the chemical structure of the carrier nor the number of cross-linkages between an enzyme and a carrier change on phase transition. That gives an unique opportunity to elucidate the difference between enzymes immobilized on water-soluble and water-insoluble supports. A detailed study of the phase transition effect on thermal stability of the enzymes and protein-protein interactions has been carried out. The following effects were found. Pronounced thermal stabilization of penicillin amidase and urease may be achieved on two conditions: the enzyme is in the precipitate; (b) the enzyme is linked to the N-PEC nucleus. Then the thermal stability of N-PEC-bound penicillin amidase increases 7-fold at pH 5.7, 60 degrees C, and 300-fold at pH 3.1, 25 degrees C, compared to the native enzyme. For urease, the thermal stabilization increases 20-fold at pH 5.0, 70 degrees C. The localization of enzyme on N-PEC has been established by titration of alpha-chymotrypsin bound to a polycation or polyanion with basic pancreatic trypsin inhibitor. Both in solution (pH 6.1) and in N-PEC precipitate (pH 5.7), an alpha-chymotrypsin molecule bound to a polyanion is fully exposed to the solution. If the enzyme is bound to a polycation, only 20% of alpha-chymotrypsin molecules in the precipitate and 40% in solution retain their ability for protein-protein interactions. This means that a polycation-bound enzyme is localized in the hydrophobic nucleus of the complex, whereas the polyanion-bound enzyme sits on the hydrophilic shell of the complex. On pH-induced phase transition (pH decreases from 6.1 to 5.7), there occurs a stepwise decrease in penicillin amidase activity which is due to a 9.8-fold increase in the Km for 2-nitro-4-phenylacetamidobenzoic acid. Change of the catalytic activity and thermal stability of N-PEC-bound penicillin amidase is fully reversible and reproducible. Such soluble-insoluble immobilized enzymes with controllable thermal stability and activity may be used for simulating events in vivo and in biotechnology.  相似文献   

2.
The synthesis of benzylpenicillin (BP) after mixing phenyl-acetyl-glycine(PAG), 6-aminopenicillanic acid (6-APA) and free or immobilized penicillin amidase (E.C.3.5.1.11.) was studied as a function of pH and ionic strength. Before the final equilibrium was reached a kinetically controlled synthesis of BP was observed. Then a transient maximum concentration in BP much larger than the final equilibrium content was synthesized in the acyl-transfer process. The factors influencing this maximum have been analyzed. Increasing ionic strength markedly decreased the maximum in BP and the rate of deacylation of phenyl-acetyl-penicillin amidase by 6-APA. The change was largest when the enzyme was immobilized in a positively charged support, where at low ionic strength the concentration of 6-APA around the enzyme is larger than the bulk concentration due to the partitioning of charged solutes.  相似文献   

3.
Confocal laser scanning microscopy was applied to measure the pH value in the carrier of immobilized enzymes during the enzyme-catalyzed synthesis. pH profiles with a high resolution are shown, with the pH increasing in the core of the particles. Significant differences occur for different carrier material, particle size, porosity and surface modification. The increased pH value is identified as one of the reasons leading to reduced enzyme selectivity in the penicillin amidase catalyzed synthesis of cephalosporins and penicillins.  相似文献   

4.
A method for catalyst development has been suggested for immobilizing whole E. coli cells containing penicillin amidase. Conventional methods have limitations, such as permeation of substrate and product through cellular membranes, leaching of protein and other cellular components into the reaction phase, lower specific activity compared to immobilized enzyme system, etc. The whole cell immobilization technique has been optimized for different process parameters. The most suitable conditions for this process were pH, 4.25; cell concentration, 3.75%; concentration of glutaraldehyde, 1.5%; level of bovine serum albumin as additional support, 2 mg ml-1. The reaction was continued for 2 h. The granular catalyst has good mechanical strength, low protein leachability, and high retention of penicillin amidase activity.  相似文献   

5.
Molecular chaperones in aqueous‐organic mixtures can broaden the utility of biocatalysis by stabilizing enzymes in denaturing conditions. We have designed a self‐renaturing enzyme‐chaperone chimera consisting of penicillin amidase and a thermophilic chaperonin that functions in aqueous‐organic mixtures. The flexible linker separating the enzyme and chaperone domains was optimized and the design was extended to incorporate a chitin binding domain to facilitate immobilization of the chimera to a chitin support. The initial specific activity of penicillin amidase was not compromised by the enzyme‐chaperone fusion or by immobilization. The total turnover number of immobilized chimera for amoxicillin synthesis in aqueous‐methanol mixtures was 2.8 times higher after 95 h than the total turnover number of the immobilized penicillin amidase lacking a chaperone domain. Similarly, in 32% methanol the soluble chimera was active for over three times longer than the enzyme alone. This approach could easily be extended to other enzyme systems. Biotechnol. Bioeng. 2009;102: 1316–1322. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
An enzyme preparation in a spherical granule form was obtained by copolymerization of penicillin amidase (EC 3.5.1.11) (previously modified with maleic anhydride) and acrylamide via a crosslinking agent. As compared with the native enzyme, immobilized amidase is more resistant to heating, has a lower affinity to benzylpenicillin, and is less inhibited by phenylacetate. Its substrate specificity and optimum pH remain unchanged.  相似文献   

7.
目的:以活性炭为载体固定化粪产碱杆菌来源的青霉素G酰化酶,考察固定化酶的性质。方法:对影响酶固定化的因素优化筛选,确定有显著影响的因素:pH、离子强度、酶量、固定化时间进行L934的正交实验,获得最佳固定化条件,并对固定化酶的最适反应温度、pH及批次稳定性进行研究。结果:最佳固定化条件为:载体0.3g,酶量5mL,总反应体系为12mL,离子强度1mol/L,温度4℃,pH 7.0,固定化40h;最高固定化酶活性为135.9U/g湿载体。固定化酶性最适反应温度为55℃,最适pH为10,重复使用12次后没有活性损失。结论:活性炭吸附固定化青霉素G酰化酶的活性高,批次反应稳定,具有工业应用潜力。  相似文献   

8.
Destruction of polyelectrolyte complexes (PECs) formed by DNA and synthetic polyamines of different structures was carried out by addition of low molecular weight electrolyte to PEC solution at different pHs. The dissociation was studied by the fluorescence quenching technique using the ability of cationic dye ethidium bromide to intercalate into free sites of DNA double helix followed by ignition of ethidium fluorescence. Structure of amine groups of the polycation was shown to be a decisive factor of PEC stability. PECs formed by polycations with quaternary amine groups, i.e., poly(N-alkyl-4-vinylpyridinium) bromides, poly(N, N-dimethyldiallylammonium) chloride, and ionene bromide, were pH independent and the least tolerant to destruction by the added salt. Primary amine groups of basic polypeptides poly-L-lysine hydrobromide and poly-L-arginine hydrochloride as well as synthetic polycation poly(vinyl-2-aminoethyl ether) provided the best stability of PECs in water-salt solutions under wide pH range. Moderate and pH-dependent stability was revealed for PECs included poly(N,N-dimethylaminoethylmethacrylate) with tertiary amine groups in the chain or branched poly(ethylenimine) with primary, secondary, and tertiary amine groups in the molecule. The data obtained appear to be the basis for design of DNA-containing PECs with given and controllable stability. The design may be accomplished not only by proper choice of polyamine of one or another type, but by using of tailor-made polycations with given composition of amine groups of different structure in the chain as well. Thus, quaternization of a part of tertiary amine groups of poly(N, N-dimethylaminoethylmethacrylate) resulted in expected decrease of stability of DNA-containing PECs in water-salt solutions. The destruction of PEC formed by random copolymer of 4-vinylpyridine and N-ethyl-4-vinylpyridinium bromide was pH sensitive and could be performed under pH and ionic strength closed to the physiological conditions. This result appears to be particularly promising for addressing DNA packed in PEC species to the target cell.  相似文献   

9.
pH and temperature conformation transitions in the active center of penicillin amidase i.e. penicillinamidohydrolase E.C. 3.5.I.II were investigated by means of the kinetic method and a new ultrasonic method. It was shown that the catalytic activity of the enzyme was controlled by 2 ionogenic groups with pK 6.1 and 10.2. The study of penicillinamidase by means of the ultrasonic method showed that the ionogenic group with pK 10 was responsible for maintaining the catalytically active conformation of the enzyme active center. Investigation of the temperature relation between the kinetic parameters of the enzymatic hydrolysis of benzylpenicillin catalyzed by penicillin amidase and the data on the effect of ultrasound on the enzyme showed that the enzyme was subjected to the temperature conformation transiton. The temperature and thermodynamic parameters of the conformation transition were determinded (T=318 degrees K, delta H=81 kcal/mole and delta S=255 e.u.). The structure of the active center of the enzyme is discussed on the basis of the data obtained.  相似文献   

10.
A procedure is described for screening bacteria for the presence of penicillin amidase. Cells, grown in the presence of phenylacetic acid, are incubated with phenoxymethylpenicillin (type I), benzylpenicillin (type II) or ampicillin and the 6-aminopenicillanic acid formed is detected and quantitatively estimated by its strong reaction with fluorescamine at pH 4. There is no requirement for separation of the penicillin substrate from the product but when alpha-aminobenzylpenicillin derivatives are used as enzyme substrates the amount of 6-aminopenicillanic acid formed must be determined by calculation. The procedure allowed positive and reliable identification of penicillin amidases in six organisms known to produce the enzyme and indicated that some of these enzymes had different properties in reactivity towards alpha-aminobenzylpenicillin derivatives.  相似文献   

11.
The inactivation behavior of the xylose isomerase from Thermotoga neapolitana (TN5068 XI) was examined for both the soluble and immobilized enzyme. Polymolecular events were involved in the deactivation of the soluble enzyme. Inactivation was biphasic at 95 degrees C, pH 7.0 and 7.9, the second phase was concentration-dependent. The enzyme was most stable at low enzyme concentrations, however, the second phase of inactivation was 3- to 30-fold slower than the initial phase. Both phases of inactivation were more rapid at pH 7.9, relative to 7.0. Differential scanning calorimetry of the TN5068 XI revealed two distinct thermal transitions at 99 degrees and 109 degrees C. The relative magnitude of the second transition was dramatically reduced at pH 7.9 relative to pH 7.0. Approximately 24% and 11% activity were recoverable after the first transition at pH 7.0 and 7.9, respectively. When the TN5068 XI was immobilized by covalent attachment to glass beads, inactivation was monophasic with a rate corresponding to the initial phase of inactivation for the soluble enzyme. The immobilized enzyme inactivation rate corresponded closely to the rate of ammonia release, presumably from deamidation of labile asparagine and/or glutamine residues. A second, slower inactivation phase suggests the presence of an unfolding intermediate, which was not observed for the immobilized enzyme. The concentration dependence of the second phase of inactivation suggests that polymolecular events were involved. Formation of a reversible polymolecular aggregate capable of protecting the soluble enzyme from irreversible deactivation appears to be responsible for the second phase of inactivation seen for the soluble enzyme. Whether this characteristic is common to other hyperthermophilic enzymes remains to be seen.  相似文献   

12.
A rate equation has been derived to describe the hydrolysis of benzylpenicillin to 6-aminopenicillanic acid by penicillin amidase. The integrated from of the rate equation has been shown to predict satisfactorily the progress of the reaction in a batch reactor using either soluble or immobilized penicillin amidase. The rate equation was also used to predict the performance of a continuous feed stirred tank reactor containing immobilized enzyme. There was good agreement with experimental measurements.  相似文献   

13.
Stabilisation and immobilisation of penicillin amidase   总被引:2,自引:0,他引:2  
Penicillin amidase was coupled to a periodate-oxidised dextran by reductive alkylation in the presence of sodium cyanoborohydride. A loss of activity (25%) was observed but the conjugate enzyme dextran was more thermostable than the native enzyme. Native and dextran-conjugated penicillin amidase were immobilised on amino activated silica (Promaxon, Spherosil, Aerosil) by a classical method using glutaraldehyde for the native enzyme and reductive alkylation for the modified enzyme. Good relative activity of the enzymes was obtained after insolubilisation. Immobilisation of both native and modified enzymes resulted in the thermostabilisation of the penicillin amidase.  相似文献   

14.
A -lactamase-free penicillin amidase from Alcaligenes sp. active against various -lactams was purified to homogeneity. The enzyme can hydrolyze penicillin G to 6-amino penicillanic acid (6-APA) and furnish penicillin G from 6-APA and phenyl acetic acid by condensation. The penicillin amidase is a heterodimer of subunit masses of 63 kDa and 22 kDa, respectively. Its isoelectric point is at pH 8.5. Cephalothin was found to be the best substrate. This is a novel type II penicillin amidase which shares the properties of both type II and type III enzymes. It is thermostable and, unlike penicillin amidase from A. faecalis, its stability remains unperturbed even in presence of reductant. An inhibition study by 2-hydroxy-5-nitro benzylbromide indicated the involvement of tryptophan in catalysis by the enzyme.  相似文献   

15.
The objective of this study was to compare a novel controlled release tablet formulation based on interpolyelectrolyte complex (PEC). Interpolymer interactions between the countercharged polymers like Eudragit® EPO (polycation) and hypromellose acetate succinate (polyanion) and Eudragit® EPO and hypromellose phthalate (polyanion) were investigated with a view to their use in per oral controlled release drug delivery systems. The formation of inter-macromolecular ionic bonds between cationic polymer and anionic polymer was investigated using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry. The FT-IR spectra of the tested polymeric matrices are characterized by visible changes in the observed IR region indicating the interaction between chains of two oppositely charged copolymers. The performance of the in situ formed PEC as a matrix for controlled release of drugs was evaluated, using acetaminophen as a model drug. The dissolution data of these matrices were fitted to different dissolution models. It was found that drug release followed zero-order kinetics and was controlled by the superposition of the diffusion and erosion. These profiles could be controlled by conveniently modifying the proportion of the polymer ratio, polymer type, and polymer concentration the in the tablets.KEY WORDS: Eudragit E, hypromellose acetate succinate, hypromellose phthalate polyelectrolyte complexation  相似文献   

16.
Ampicillin and cephalexin are beta-lactam antibiotics that are synthesized by the condensation of D-(-)-alpha-aminophenylacetic acid with 6-aminopenicillanic acid or 7-aminodeacetoxycephalosporanic acid, respectively. The rates at which the penicillin amidase of Escherichia coli catalyzes these reactions are too low to be of practical use. The objective of this study was to determine whether it is possible to alter the substrate specificity of penicillin amidase and select enzymes that efficiently hydrolyze substrates with alpha-aminophenylacetyl moieties at low pH, at which the alpha-amino group is nearly completely protonated. In this study, D-(-)-alpha-aminophenylacetyl-(L)-leucine (APAL) was used as a substrate analog of ampicillin and cephalexin. The gene for the penicillin amidase of E. coli ATCC 11105 was cloned and transferred to a leucine auxotroph of E. coli; numerous amidase mutants were selected by their ability to cleave APAL and provide leucine for growth in low-pH medium. The plasmid encoding one of the mutant amidases (pA135) was used to transform naive cells, and transformants that expressed the mutant amidase were shown to grow more rapidly in medium at pH 6.5 containing 0.1 mM APAL as the sole leucine source than did cells with the wild-type amidase. The mutant amidase was purified, and the second-order rate constant (kcat/Km) for APAL hydrolysis at pH 6.5 was found to be 10-fold greater than the rate observed with the wild-type enzyme. The difference between the rates of APAL hydrolysis by the mutant and wild-type amidases increased as the pH of the reactions decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Ampicillin and cephalexin are beta-lactam antibiotics that are synthesized by the condensation of D-(-)-alpha-aminophenylacetic acid with 6-aminopenicillanic acid or 7-aminodeacetoxycephalosporanic acid, respectively. The rates at which the penicillin amidase of Escherichia coli catalyzes these reactions are too low to be of practical use. The objective of this study was to determine whether it is possible to alter the substrate specificity of penicillin amidase and select enzymes that efficiently hydrolyze substrates with alpha-aminophenylacetyl moieties at low pH, at which the alpha-amino group is nearly completely protonated. In this study, D-(-)-alpha-aminophenylacetyl-(L)-leucine (APAL) was used as a substrate analog of ampicillin and cephalexin. The gene for the penicillin amidase of E. coli ATCC 11105 was cloned and transferred to a leucine auxotroph of E. coli; numerous amidase mutants were selected by their ability to cleave APAL and provide leucine for growth in low-pH medium. The plasmid encoding one of the mutant amidases (pA135) was used to transform naive cells, and transformants that expressed the mutant amidase were shown to grow more rapidly in medium at pH 6.5 containing 0.1 mM APAL as the sole leucine source than did cells with the wild-type amidase. The mutant amidase was purified, and the second-order rate constant (kcat/Km) for APAL hydrolysis at pH 6.5 was found to be 10-fold greater than the rate observed with the wild-type enzyme. The difference between the rates of APAL hydrolysis by the mutant and wild-type amidases increased as the pH of the reactions decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
The present study concern with the extracellular production of penicillin amidase in a cost-effective cheese whey medium under submerged fermentation. ABacillus sp. MARC-0103 producing a high level of extra cellular penicillin G amidase was isolated from rice starch by heat shock method. The penicillin G amidase production in the strain was induced by phenyl acetic acid. The culture medium was optimized by using Plackett-Burman and central composite experimental designs for enhanced production of penicillin amidase. The factorial design indicated that the main factors that positively affect penicillin amidase production were casein hydro-lysate, CaCl2·2H2O, FeCI3·6H2O, Na2SO4 and cheese whey, whereas the presence of calcium carbonate and magnesium chloride in the medium had no effect on enzyme production. Phenyl acetic acid concentration and time of addition was found critical for enzyme pro duction. Enzyme production was enhanced very much by multiple addition of inducer. Other cultural condition such as pH, temperature, inoculum size and age were also optimized. More than two fold increase in enzyme production (40.7 U/ml/min) was observed under optimized cultural conditions. The molecular mass was estimated to be 40.0 kDa by SDS-PAGE.  相似文献   

20.
作者合成了阴离子型和阳离子型葡聚糖,以此为载体,用CNBr活化其剩余羟基,固定化了葡萄糖淀粉酶和葡萄糖异构酶。就离子型载体对固定化酶的蛋白载量、最适pH和热稳定性等的影响做了考察。发现固定化酶的蛋白载量不仅与载体的电性质有关,也与酶分子自身的电性质有关。当载体电性质与酶蛋白电性质相反时,固定化酶的蛋白载量增加,热稳定性提高、载体电性质与酶蛋白电性质相同时,固定化酶的蛋白载量不变或下降,其热稳定性不变。作者还发现当离子型载体孔度和体系缓冲液浓度一定时,酶分子能否进入多孔性载体内部,对其最适pH是否变化影响极大。若酶分子仅被连接在载体的外表层,其最适pH不发生变化,反之亦然。作者还观察到当多糖类载体引入氨基或羧基后,大大增强了其抵抗微生物侵蚀的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号