首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We have investigated the presence of higher-order chromatin structures in different maize tissues. Taking advantage of the pulsed-field gel electrophoresis technique to analyse large DNA fragments from intact nuclei and cells, we have determined the size distribution of the high-molecular-weight DNA fragments obtained from chromatin degradation by endogenous nucleases in isolated nuclei. Chromatin digestion leads to the appearance of stable DNA fragments of about 50 kb in all the tissues examined, suggesting the folding of DNA in higher-order chromatin domain structures. It has been reported that such chromatin domains are formed by loops of the 30 nm fibres anchored to the nuclear matrix by a complex set of proteins, including DNA topoisomerase II. Treatment of maize protoplasts with the calcium ionophore A23187 and the antitumour drug VM-26, which specifically inhibit the religation of the cleaved DNA in the topoisomerase II reaction, also produces the 50 kb structure. Analysis of the DNA contained in the 50 kb chromatin structure shows a higher degree of methylation than in bulk maize chromosomal DNA. The role of methylated DNA in the chromatin folding is discussed.  相似文献   

2.
Massive chromatin fragmentation (around 50 kb, to several hundred kb) is observed in nuclear lysates of human peripheral blood lymphocytes (PBLs) upon their treatment with nuclease-free protein-denaturants. There is a consistent variation in the fragment size distributions that parallels the proliferative activity of the cells. Predominantly approximately 50 kb fragmentation is exhibited in samples from cells immunsuppressed via CD4 crosslinking, as opposed to the heterogeneous, higher molecular weight DNA of anti-TcR/CD3-, phytohemagglutininor concanavalin A-stimulated cells. Tritiated thymidine incorporated into DNA in the latter cultures can be detected in the approximately 50 kb band. Direct lysis of agarose-embedded, live cells in alkali+detergent also yields fragmented DNA, with a single-strand size of >/=50 kb. These data suggest that (i) the cells yielding fragmented DNA were alive at the time of DNA extraction, (ii) either regularly arranged, preformed nicks or hypersensitive sites may be present at every roughly 50-100 kb in the chromatin of PBLs, (iii) these sites or the fragmentation mechanism acting upon them, appear to be regulated in concert with the transit of cells between the resting and proliferative compartments.  相似文献   

3.
The topoprofile of 1.7 kb plasmids from the archaebacterium Halobacterium GRB was analysed from cells growing with or without VP16 (etoposide). This drug interferes with the breakage-reunion reaction of eukaryotic DNA topoisomerase II by inhibiting the ligase activity of this enzyme. Addition of VP16 to the culture medium of Halobacterium GRB cells results in the introduction of single- and double-strand DNA breaks in part of the plasmid population, with proteins covalently associated at their 5' ends. While some of the remaining covalently closed circular DNA molecules are relaxed, VP16 treatment also gives rise to the production of positively supercoiled 1.7 kb plasmids. In contrast to adriamycin, VP16 does not intercalate into the 1.7 kb plasmid DNA in vivo. These results suggest that the VP16 target in halobacteria is a DNA topoisomerase II. Three major cleavage sites were detected on the 1.7 kb plasmid after VP16 treatment in vivo.  相似文献   

4.
Phenomena involving the disassembly of chromosomes to ∼50 kbp double-stranded fragments upon protein denaturing treatments of normal and apoptotic mammalian nuclei as well as yeast protoplasts may be an indication of special, hypersensitive regions positioned regularly at loop-size intervals in the eukaryotic chromatin. Here we show evidence in yeast cell systems that loop-size fragmentation can occur in any phase of the cell cycle and that the plating efficiency of these cells is ∼100%. The possibility of sequence specificity was investigated within the breakpoint cluster region (bcr) of the human MLL gene, frequently rearranged in certain leukemias. Our data suggest that DNA isolated from yeast cultures or mammalian cell lines carry nicks or secondary structures predisposing DNA for a specific nicking activity, at non-random positions. Furthermore, exposure of MLL bcr-carrying plasmid DNA to S1 nuclease or nuclear extracts or purified topoisomerase II elicited cleavages at the nucleotide positions of nick formation on human genomic DNA. These data support the possibility that certain sequence elements are preferentially involved in the cleavage processes responsible for the en masse disassembly of chromatin to loop-size fragments upon isolation of DNA from live eukaryotic cells.  相似文献   

5.
DNA topoisomerase II is believed to be the enzyme that produces the protein-associated DNA strand breaks observed in mammalian cell nuclei treated with various intercalating agents. Two intercalators--4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA, amsacrine) and 2-methyl-9-hydroxyellipticinium (2-Me-9-OH-E+)--differ in their effects on protein-associated double-strand breaks in isolated nuclei. m-AMSA stimulates their production at all concentrations, whereas 2-Me-9-OH-E+ stimulates at low concentrations and inhibits at high concentrations. We have reproduced these differential effects in experiments carried out in vitro with purified L1210 DNA topoisomerase II, and we have found that concentrations of 2-Me-9-OH-E+ above 5 microM prevent the trapping of DNA-topoisomerase II cleavable complexes irrespective of the presence of m-AMSA. It also stimulated topoisomerase II mediated DNA strand passage, again with or without inhibitory amounts of m-AMSA (this result suggests that extensive intercalation by 2-Me-9-OH-E+ destabilized the cleavable complexes). From these data, it is concluded that intercalator-induced protein-associated DNA strand breaks observed in intact eukaryotic cells and isolated nuclei are generated by DNA topoisomerase II and that intercalators can affect mammalian DNA topoisomerase II in more than one way. They can trap cleavable complexes and inhibit DNA topoisomerase II mediated DNA relaxation (m-AMSA and low concentrations of 2-Me-9-OH-E+) or destabilize cleavable complexes and stimulate DNA relaxation (high concentrations of 2-Me-9-OH-E+).  相似文献   

6.
Apoptotic DNA fragmentation induced by gamma-rays has been compared with the DNA loop sizes in G0-human lymphocytes using pulsed field gel electrophoresis (PFGE). Genomic DNA was cleaved into the DNA loops at the topoisomerase II mediated attachment points using short treatment of cells with etoposide. The apoptotic fragmentation, with a distinct cut-off around 50 kb for a maximum length of fragments, appeared 5 h after irradiation when the most part of radiation-induced DNA double strand breaks (DSBs) have been repaired. The data indicate that apoptotic fragmentation of DNA in the G0-human lymphocytes begins when repair of radiation-induced DSBs has been completed. Similar apoptotic DNA fragmentation was also observed following the treatment of cells with etoposide. All genomic DNA was fragmented into 50-kb fragments during the final stages of apoptosis. Most of the DNA in resting lymphocytes is organized into Mb-size loops but loops of sizes down to 50 kb were also observed. A sharp border between the size distributions of DNA loops and apoptotic fragments was found. The data suggest that 50 kb apoptotic fragmentation is not based on excision of the DNA loops. No apoptotic fragments with the sizes more than 5.7 Mb were seen during the whole course of apoptosis. This observation indicates that despite intensive apoptotic fragmentation into the 50-kb fragments the chromosomes maintain integrity during radiation-induced apoptosis in human lymphocytes. We propose a model for radiation-induced apoptotic fragmentation in human lymphocytes that involves four stages: induction of DNA breaks and relaxation of DNA loops; DNA repair followed by reorganization of the DNA loops into the 50-kb units of condensed chromatin; co-operative fragmentation of the reorganized DNA loops into the distinct 50-kb fragments and resealing of the chromosome ends at the sites of this fragmentation; cleavage of the 50-kb fragments at the internucleosomal spacers.  相似文献   

7.
Assembly of nucleosomes on relaxed, covalently closed DNA has been studied in a nuclear extract of Xenopus laevis oocytes. Nucleosomes containing the four histones H3, H4, H2A and H2B but lacking histone H1 are readily assembled on the DNA. The pattern of micrococcal nuclease digestion shows that the nucleosomes assembled in the absence of ATP and Mg (II) are closely packed, with a periodicity of 150 base pairs (bp). In contrast, in the presence of ATP and Mg (II) the spacing of the nucleosomes is 180 bp, similar to that observed for nucleosomes assembled on DNA microinjected into oocyte nuclei. The ATP and Mg (II) requirements for the assembly of correctly spaced nucleosomes are unrelated to the activity of the ATP and Mg (II) dependent DNA topoisomerase II in the extract; addition of specific inhibitors of eukaryotic DNA topoisomerase II has no effect on the spacing of the reconstituted nucleosomes. The ATP requirement in the assembly of correctly spaced nucleosomes can be substituted by adenosine 5'-O-3'-thiotriphosphate (gamma-S-ATP) but not by adenyl-5'-yl imidodiphosphate (AMP-P-(NH)-P).  相似文献   

8.
Ca2+- and Mg2+-dependent endonucleases have been implicated in DNA fragmentation during apoptosis. We have demonstrated that particular nucleases of this type are inhibited by poly(ADP-ribosyl)ation and suggested that subsequent cleavage of PARP by caspase-3 might release these nucleases from poly(ADP-ribosyl)ation-induced inhibition. Hence, we purified and partially sequenced such a nuclease isolated from bovine seminal plasma and identified human, rat and mouse homologs of this enzyme. The extent of sequence homology among these nucleases indicates that these four proteins are orthologous members of the family of DNase I-related enzymes. We demonstrate that the activation of the human homolog previously specified as DNAS1L3 can induce Ca2+- and Mg2+-dependent DNA fragmentation in vitro and in vivo. RT-PCR analysis failed to detect DNAS1L3 mRNA in HeLa cells and nuclei isolated from these cells did not exhibit internucleosomal DNA fragmentation when incubated in the presence of Ca2+and Mg2+. However, nuclei isolated from HeLa cells that had been stably transfected with DNAS1L3 cDNA underwent such DNA fragmentation in the presence of both ions. The Ca2+ionophore ionomycin also induced internucleosomal DNA degradation in transfected but not in control HeLa cells. Transverse alternating field electrophoresis revealed that in nuclei from transfected HeLa cells, but not in those from control cells, DNA was cleaved into fragments of >1000 kb in the presence of Mg2+; addition of Ca2+in the presence of Mg2+resulted in processing of the >1000 kb fragments into 50 kb and oligonucleosomal fragments. These results demonstrate that DNAS1L3 is necessary for Ca2+- and Mg2+-dependent cleavage of DNA into both oligonucleosomal and high molecular mass fragments in specific cell types.  相似文献   

9.
Eukaryotic DNA topoisomerase I reaction is topology dependent.   总被引:11,自引:6,他引:5       下载免费PDF全文
The effects of supercoiling on the topoisomerization reaction by eukaryotic DNA topoisomerases I have been analyzed. The systems used were: DNA topoisomerase I from wheat germ, chicken erythrocyte and calf thymus on a 2.3 kb DNA fragment which encompasses the immunoglobulin kappa-light chain (L kappa) promoter of the mouse plasmacytoma MPC11; S. cerevisiae DNA topoisomerase I on a 2.2 kb DNA fragment from the same organism which encompasses the regulatory and the coding region of the ADH II gene; wheat germ DNA topoisomerase I on the plasmid pUC18. It was found in every system that lack of torsional stress prevents topoisomerization of the substrate. A simple regulatory model of DNA topoisomerase I function, based on topological considerations, is presented.  相似文献   

10.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclindependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.  相似文献   

11.
12.
M P Lee  T Hsieh 《Nucleic acids research》1992,20(19):5027-5033
Anti-tumor drug VM26 greatly stimulates topoisomerase II mediated DNA cleavage by stabilizing the cleavable complex. Addition of a strong detergent such as SDS to the cleavable complex induces the double stranded DNA cleavage. We demonstrate here that heat treatment can reverse the double stranded DNA cleavage; however, topoisomerase II remains bound to DNA even in the presence of SDS. This reversed complex has been shown to contain single strand DNA breaks with topoisomerase II covalently linked to the nicked DNA. Chelation of Mg++ by EDTA and the addition of salt to a high concentration also reverse the double strand DNA cleavage, and like heat reversion, topoisomerase II remains bound to DNA through single strand DNA break. The reversion complex can be analyzed and isolated by CsCl density gradient centrifugation. We have detected multiple discrete bands from such a gradient, corresponding to protein/DNA complexes with 1, 2, 3, ..... topoisomerase II molecules bound per DNA molecule. Analysis of topoisomerase II/DNA complexes isolated from the CsCl gradient indicates that there are single stranded DNA breaks associated with the CsCl stable complexes. Therefore, topoisomerase II/DNA complex formed in the presence of VM26 cannot be completely reversed to yield free DNA and enzyme. We discuss the possible significance of this finding to the mechanism of action of VM26 in the topoisomerase II reactions.  相似文献   

13.
D J Fernandes  M K Danks  W T Beck 《Biochemistry》1990,29(17):4235-4241
CEM leukemia cells selected for resistance to VM-26 (CEM/VM-1) are cross-resistant to various other DNA topoisomerase II inhibitors but not to Vinca alkaloids. Since DNA topoisomerase II is a major protein of the nuclear matrix, we asked if alterations in nuclear matrix topoisomerase II might be important in this form of multidrug resistance. Pretreatment of drug-sensitive CEM cells for 2 h with either 5 microM VM-26 or 3 microM m-AMSA reduced the specific activity of newly replicated DNA on the nuclear matrix by 75 and 50%, respectively, relative to that of the bulk DNA. However, neither VM-26 nor m-AMSA affected the relative specific activity of nascent DNA isolated from the nuclear matrices of drug-resistant CEM/VM-1 cells. The decatenating and unknotting activities of DNA topoisomerase II were 6- and 7-fold lower, respectively, in the nuclear matrix preparations from the CEM/VM-1 cells compared to parental CEM cells. Western blot analysis revealed that the amount of immunoreactive topoisomerase II in the nuclear matrices of the CEM/VM-1 cells was decreased 3.2-fold relative to that in CEM cells, but there was no significant difference in the amount of enzyme present in the nonmatrix (1.5 M salt soluble) fractions of nuclei from these cell lines. Increasing the NaCl concentration used in the matrix isolation procedure from 0.2 to 1.8 M resulted in a progressive decrease in the specific activity of topoisomerase II in matrices of CEM/VM-1 but not CEM cells, which suggested that the association of the enzyme with the matrix is altered in the resistant cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The decatenation activity of DNA topoisomerase II is essential for viability as eukaryotic cells traverse mitosis. Phosphorylation has been shown to stimulate topoisomerase II activity in vitro. Here we show that topoisomerase II is a phosphoprotein in yeast and that the level of incorporated phosphate is significantly higher at mitosis than in G1. Comparison of tryptic phosphopeptide maps reveals that the major phosphorylation sites in vivo are targets for casein kinase II. Incorporation of phosphate into topoisomerase II is nearly undetectable at the non-permissive temperature in a conditional casein kinase II mutant. The sites modified by casein kinase II are located in the extreme C-terminal domain of topoisomerase II. This domain is absent in prokaryotic and highly divergent among eukaryotic type II topoisomerases, and may serve to regulate functions of topoisomerase II that are unique to eukaryotic cells.  相似文献   

15.
Endonuclease G (endoG) is released from mitochondria during apoptosis and is in part responsible for internucleosomal DNA cleavage. Here we report the action of the purified human recombinant form of this endonuclease on naked DNA and chromatin substrates. The addition of the protein to isolated nuclei from non-apoptotic cells first induces higher order chromatin cleavage into DNA fragments > or = 50 kb in length, followed by inter- and intranucleosomal DNA cleavages with products possessing significant internal single-stranded nicks spaced at nucleosomal ( approximately 190 bases) and subnucleosomal ( approximately 10 bases) periodicities. We demonstrate that both exonucleases and DNase I stimulate the ability of endoG to generate double-stranded DNA cleavage products at physiological ionic strengths, suggesting that these activities work in concert with endoG in apoptotic cells to ensure efficient DNA breakdown.  相似文献   

16.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclin-dependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.

Key Words:

Plant cyclin B2, Topoisomerase II, ICRF-193, G2 checkpoint, Microtubules  相似文献   

17.
18.
We studied the role of proteases in apoptosis using a cell-free system prepared from a human leukemia cell line. HL60 cells are p53 null and extremely sensitive to a variety of apoptotic stimuli including DNA damage induced by the topoisomerase I inhibitor, camptothecin. We measured DNA fragmentation induced in isolated nuclei by cytosolic extracts using a filter elution assay. Cytosol from camptothecin-treated HL60 cells induced internucleosomal DNA fragmentation in nuclei from untreated cells. This fragmentation was suppressed by serine protease inhibitors. Serine proteases (trypsin, endoproteinase Glu-C, chymotrypsin A, and proteinase K) and papain by themselves induced DNA fragmentation in naive nuclei. This effect was enhanced in the presence of cytosol from untreated cells. Cysteine protease inhibitors (E-64, leupeptin, Ac-YVAD-CHO [ICE inhibitor]) did not affect camptothecin-induced DNA fragmentation. The apopain/Yama inhibitor, Ac-DEVD-CHO, and the proteasome inhibitor, MG-132, were also inactive both in the cell-free system and in whole cells. Interleukin-1β converting enzyme (ICE) or human immunodeficiency virus protease failed to induce DNA fragmentation in naive nuclei. Together, these results suggest that DNA damage activates serine protease(s) which in turn activate(s) nuclear endonuclease(s) during apoptosis in HL60 cells.  相似文献   

19.
The topoisomerase II inhibitor, VP-16 (etoposide), is an important component in many chemotherapeutic regimens. To cahracterize resistance to this drug, the human melanoma cell line, FEM-X, was selected in multiple steps with VP-16. To prevent the development of typical multidrug resistance, an inhibitor of P-glycoprotein, the tiapamil analog, RO-11–2933, was added to the selections. The resultant clone FVP3 is 56-fold resistant to VP-16 and cross-resistant to doxorubicin (Adriamycin) (9-fold) and VM-26 (27-fold). These cells are also two- to fourfold resistant to m-AMSA, daunorubicin, and mitoxantrone. FVP3 is not resistant to the P-glycoprotein substrate vinblastine, does not express the MDR1 gene at detectable levels, and does not show reduced 3H-VP-16 accumulation. Unlike other cell lines that exhibit resistance to inhibitors of topoisomerase II, FVP3 has the same level of topoisomerase II expression and activity as FEM-X. Using live cells treated with VP-16, band depeletion assays and KCI/SDS precipitation assays show that topoisomerase II from FVP3 is much less susceptible to drug-induced cleavable complex formation than is that from FEM-X. This difference in sensitivity to VP-16 is also detected using lysates from disrupted cells, but not with isolated nuclei devoid of cytoplasmic and membrane components. In addijtion, the topoisomerase li present in nuclear edtracts from FVP3 is not resistant to the effects of VP-16 as measured by: (1)inhibition of strand passing activity during decatenation of kinetoplast DNA, (2) drug-induced linearization of plasmid DNA, and (3) immunodepletion by VP-16. These results suggest that some component of the cytoplasm or cellular membranes, or a factor depleted from nuclei during their isolation, is responsible for the resistance to VP-16 in FVP3. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The induction by interleukin-2 of DNA topoisomerase I and DNA topoisomerase II activities in the human T cell line HuT 78 was investigated. HuT 78 cells were treated with 1000 U of interleukin-2/ml, and extracts of the HuT 78 nuclei were prepared over a 24 h period. The extracts were assayed quantitatively for the activities of DNA topoisomerase I and DNA topoisomerase II. Three concomitant, transient increases of 3- to 11-fold in the specific activities of both DNA topoisomerase I and DNA topoisomerase II were observed following treatment with IL-2 at 0.5, 4, and 10 h after treatment with interleukin-2. The specific activities of both enzymes returned to base-line values after each of these transient increases. These results reveal that the activities of DNA topoisomerase I and DNA topoisomerase II are highly regulated in HuT 78 cells upon treatment with IL-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号