首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
Gaucher disease (GD), caused by a defect of β-glucosidase (β-Glu), is the most common form of sphingolipidosis. We have previously shown that a carbohydrate mimic N-octyl-β-valienamine (NOV), an inhibitor of β-Glu, could increase the protein level and enzyme activity of F213I mutant β-Glu in cultured GD fibroblasts, suggesting that NOV acted as a pharmacological chaperone to accelerate transport and maturation of this mutant enzyme. In the current study, NOV effects were evaluated in GD fibroblasts with various β-Glu mutations and in COS cells transiently expressing recombinant mutant proteins. In addition to F213I, NOV was effective on N188S, G202R and N370S mutant forms of β-Glu, whereas it was ineffective on G193W, D409H and L444P mutants. When expressed in COS cells, the mutant proteins as well as the wild-type protein were localized predominantly in the endoplasmic reticulum and were sensitive to Endo-H treatment. NOV did not alter this localization or Endo-H sensitivity, suggesting that it acted in the endoplasmic reticulum. Profiling of N-alkyl-β-valienamines with various lengths of the acyl chain showed that N-dodecyl-β-valienamine was as effective as NOV. These results suggest a potential therapeutic value of NOV and related compounds for GD with a broad range of β-Glu mutations.  相似文献   

2.
Gaucher disease (GD) is the most common form of sphingolipidosis and is caused by a defect of beta-glucosidase (beta-Glu). A carbohydrate mimic N-octyl-beta-valienamine (NOV) is an inhibitor of beta-Glu. When applied to cultured GD fibroblasts with F213I beta-Glu mutation, NOV increased the protein level of the mutant enzyme and up-regulated cellular enzyme activity. The maximum effect of NOV was observed in F213I homozygous cells in which NOV treatment at 30 microM for 4 days caused a approximately 6-fold increase in the enzyme activity, up to approximately 80% of the activity in control cells. NOV was not effective in cells with other beta-Glu mutations, N370S, L444P, 84CG and RecNciI. Immunofluorescence and cell fractionation showed localization of the F213I mutant enzyme in the lysosomes of NOV-treated cells. Consistent with this, NOV restored clearance of 14C-labeled glucosylceramide in F213I homozygous cells. F213I mutant beta-Glu rapidly lost its activity at neutral pH in vitro and this pH-dependent loss of activity was attenuated by NOV. These results suggest that NOV works as a chemical chaperone to accelerate transport and maturation of F213I mutant beta-Glu and may suggest a therapeutic value of this compound for GD.  相似文献   

3.
Gaucher disease (GD) is the most frequent lysosomal storage disease presenting in all populations. Mutations in the acid β-D-glucosidase gene (GBA) cause development of GD, resulting in a decrease or full loss of activity of this enzyme. We report here the results of the molecular-genetic analysis in 68 Russian GD patients from 65 families with the three types of this disease. The GD genotype has been completely elucidated in 58 patients and in all patients we have found at least one mutant allele (92.6%). Besides frequent mutations (p.N370S, c.1263_1317del (del55), p.L444P, p.R463C, Rec NciI) we have identified rare mutations p.R120W, p.R170C, p.R184W, p.G202R, Rec C (p.R120W; p.W184R; p.N188K; p.V191G; p.S196P; p.G202R; p.F213I), presenting in other populations of GD patients. The mutations p.P236T, p.L249Q, p.L288P, p.P319S, p.V352M, p.W381X, p.A384D identified in this study had not been described before. The GBA mutations identified in Russian patients have been compared with those found in patients of other European countries. Genotype-phenotype correlations in GD are discussed.  相似文献   

4.
R Gilbert  K Ghosh  L Rasile    H P Ghosh 《Journal of virology》1994,68(4):2272-2285
We have used the glycoprotein gB of herpes simplex virus type 1 (gB-1), which buds from the inner nuclear membrane, as a model protein to study localization of membrane proteins in the nuclear envelope. To determine whether specific domains of gB-1 glycoprotein are involved in localization in the nuclear envelope, we have used deletion mutants of gB-1 protein as well as chimeric proteins constructed by replacing the domains of the cell surface glycoprotein G of vesicular stomatitis virus with the corresponding domains of gB. Mutant and chimeric proteins expressed in COS cells were localized by immunoelectron microscopy. A chimeric protein (gB-G) containing the ectodomain of gB and the transmembrane and cytoplasmic domains of G did not localize in the nuclear envelope. When the ectodomain of G was fused to the transmembrane and cytoplasmic domains of gB, however, the resulting chimeric protein (G-gB) was localized in the nuclear envelope. Substitution of the transmembrane domain of G with the 69 hydrophobic amino acids containing the membrane anchoring domain of gB allowed the hybrid protein (G-tmgB) to be localized in the nuclear envelope, suggesting that residues 721 to 795 of gB can promote retention of proteins in the nuclear envelope. Deletion mutations in the hydrophobic region further showed that a transmembrane segment of 21 hydrophobic amino acids, residues 774 to 795 of gB, was sufficient for localization in the nuclear envelope. Since wild-type gB and the mutant and chimeric proteins that were localized in the nuclear envelope were also retained in the endoplasmic reticulum, the membrane spanning segment of gB could also influence retention in the endoplasmic reticulum.  相似文献   

5.
The initial step of the intracellular transport of G protein-coupled receptors, their insertion into the membrane of the endoplasmic reticulum, follows one of two different pathways. Whereas one group uses the first transmembrane domain of the mature receptor as an uncleaved signal anchor sequence for this process, a second group possesses additional cleavable signal peptides. The reason this second subset requires the additional signal peptide is not known. Here we have assessed the functional significance of the signal peptide of the endothelin B (ET(B)) receptor in transiently transfected COS.M6 cells. A green fluorescent protein-tagged ET(B) receptor mutant lacking the signal peptide was nonfunctional and retained in the endoplasmic reticulum, suggesting that it has a folding defect. To determine the defect in more detail, ET(B) receptor fragments containing the N-terminal tail, first transmembrane domain, and first cytoplasmic loop were constructed. We assessed N tail translocation across the endoplasmic reticulum membrane in the presence and absence of a signal peptide and show that the signal peptide is necessary for N tail translocation. We postulate that signal peptides are necessary for those G protein-coupled receptors for which post-translational translocation of the N terminus is impaired or blocked by the presence of stably folded domains.  相似文献   

6.
To investigate the function of heavy chain binding protein (BiP, GRP 78) in the endoplasmic reticulum, we have characterized its interaction with a model plasma membrane glycoprotein, the G protein of vesicular stomatitis virus. We used a panel of well characterized mutant G proteins and immunoprecipitation with anti-BiP antibodies to determine if BiP interacted with newly synthesized G protein and/or mutant G proteins retained in the endoplasmic reticulum. We made three major observations: 1) BiP bound transiently to folding intermediates of wild-type G protein which were incompletely disulfide-bonded; 2) BiP did not bind stably to all mutant G proteins which remain in the endoplasmic reticulum; and 3) BiP bound stably only to mutant G proteins which do not form correct intrachain disulfide bonds.  相似文献   

7.
Alterations of the cytoplasmic domain of the vesicular stomatitis virus glycoprotein (G protein) were shown previously to affect transport of the protein from the endoplasmic reticulum, and recent studies have shown that this occurs without detectable effects on G protein folding and trimerization (R. W. Doms et al., J. Cell Biol., in press). Deletions within this domain slowed exit of the mutant proteins from the endoplasmic reticulum, and replacement of this domain with a foreign 12-amino-acid sequence blocked all transport out of the endoplasmic reticulum. To extend these studies, we determined whether such effects of cytoplasmic domain changes were transferable to other proteins. Three different assays showed that the effects of the mutations on transport of two membrane-anchored secretory proteins were the same as those observed with vesicular stomatitis virus G protein. In addition, possible effects on oligomerization were examined for both transported and nontransported forms of membrane-anchored human chorionic gonadotropin-alpha. These membrane-anchored forms, like the nonanchored human chorionic gonadotropin-alpha, had sedimentation coefficients consistent with a monomeric structure. Taken together, our results provide strong evidence that these cytoplasmic mutations affect transport by affecting interactions at or near the cytoplasmic side of the membrane.  相似文献   

8.
Fan JQ  Ishii S 《The FEBS journal》2007,274(19):4962-4971
Protein misfolding is recognized as an important pathophysiological cause of protein deficiency in many genetic disorders. Inherited mutations can disrupt native protein folding, thereby producing proteins with misfolded conformations. These misfolded proteins are consequently retained and degraded by endoplasmic reticulum-associated degradation, although they would otherwise be catalytically fully or partially active. Active-site directed competitive inhibitors are often effective active-site-specific chaperones when they are used at subinhibitory concentrations. Active-site-specific chaperones act as a folding template in the endoplasmic reticulum to facilitate folding of mutant proteins, thereby accelerating their smooth escape from the endoplasmic reticulum-associated degradation to maintain a higher level of residual enzyme activity. In Fabry disease, degradation of mutant lysosomal alpha-galactosidase A caused by a large set of missense mutations was demonstrated to occur within the endoplasmic reticulum-associated degradation as a result of the misfolding of mutant proteins. 1-Deoxygalactonojirimycin is one of the most potent inhibitors of alpha-galactosidase A. It has also been shown to be the most effective active-site-specific chaperone at increasing residual enzyme activity in cultured fibroblasts and lymphoblasts established from Fabry patients with a variety of missense mutations. Oral administration of 1-deoxygalactonojirimycin to transgenic mice expressing human R301Q alpha-galactosidase A yielded higher alpha-galactosidase A activity in major tissues. These results indicate that 1-deoxygalactonojirimycin could be of therapeutic benefit to Fabry patients with a variety of missense mutations, and that the active-site-specific chaperone approach using functional small molecules may be broadly applicable to other lysosomal storage disorders and other protein deficiencies.  相似文献   

9.
The Niemann-Pick C1 (NPC1) protein is a key participant in intracellular sterol trafficking and regulation of cholesterol homeostasis. NPC1 contains a pentahelical region that is evolutionarily related to sterol-sensing domains found in other polytopic proteins involved in sterol interactions or sterol metabolism, including sterol regulatory element-binding protein cleavage-activating protein and hydroxymethylglutaryl-CoA reductase. To gain insight into the role of the sterol-sensing domain of NPC1, we examined the effect of point mutations in the NPC1 sterol-sensing domain on the trafficking of low density lipoprotein-derived cholesterol and sphingolipids. We show that an NPC1 P692S loss of function mutation results in decreased cholesterol delivery to the plasma membrane and endoplasmic reticulum. By contrast, NPC1 proteins carrying a L657F or D787N point mutation, which correspond to the activating SCAP L315F and D443N mutations, respectively, exhibit a gain of function phenotype. Specifically, cell lines expressing the NPC1 L657F or D787N mutations show a nearly 2-fold increase in the rates of low density lipoprotein cholesterol trafficking to the plasma membrane and to the endoplasmic reticulum, and more rapid suppression of sterol regulatory element-binding protein-dependent gene expression. Trafficking of sphingolipids is intact in the D787N and L657F cell lines. Our finding that D787N and L657F are activating NPC1 mutations provide evidence for a conserved mechanism for the sterol-sensing domain among cholesterol homeostatic proteins.  相似文献   

10.
ELOVL4 (elongation of very long chain fatty acids 4) is a member of the ELO family of proteins involved in the biosynthesis of very long chain fatty acids. Protein truncation mutations in ELOVL4 have been identified in patients with autosomal dominant Stargardt-like macular degeneration. To determine whether a dominant negative mechanism is responsible for the autosomal dominant inheritance pattern of this disease, we studied the subcellular localization and interaction of wild type and mutant ELOVL4 in COS-7 and HEK 293T cultured cells by immunofluorescence and co-immunoprecipitation. Wild type ELOVL4 containing an endoplasmic reticulum retention sequence was localized to the endoplasmic reticulum as expected. In contrast, disease-associated C-terminal truncation ELOVL4 mutants accumulated as large inclusions exhibiting aggresome-like characteristics in a juxtanuclear position within COS-7 cells. When the wild type and mutant proteins were co-expressed incultured cells, wild type ELOVL4 co-purified with mutant ELOVL4 on an immunoaffinity column and co-localized with the mutant protein in aggresome-like inclusions adjacent to the nucleus. These results indicate that wild type and mutant ELOVL4 form a complex that exhibits an abnormal subcellular localization found for individually expressed mutant ELOVL4. From these studies, we conclude that disease-linked C-terminal truncation mutants of ELOVL4 exert a dominant negative effect on wild type ELOVL4, altering its subcellular localization. This dominant negative mechanism contributes to the autosomal dominant inheritance of Stargardt-like macular dystrophy.  相似文献   

11.
Heterozygous mutations in the JAG1 gene, encoding Notch ligand Jagged1, cause Alagille syndrome (ALGS). As most of the mutations are nonsense or frameshift mutations producing inactive truncated proteins, haplo-insufficiency is considered the major pathogenic mechanism of ALGS. However, the molecular mechanisms by which the missense mutations cause ALGS remain unclear. Here we analyzed the functional properties of four ALGS missense mutant proteins, P163L, R184H, G386R and C714Y, using transfected mammalian cells. P163L and R184H showed Notch-binding activities similar to that of the wild-type when assessed by immunoprecipitation. However, their trans-activation and cis-inhibition activities were almost completely impaired. These mutant proteins localized mainly to the endoplasmic reticulum (ER), suggesting that the mutations induced improper protein folding. Furthermore, the mutant proteins bound more strongly to the ER chaperone proteins calnexin and calreticulin than the wild-type did. C714Y also localized to the ER, but possessed significant trans-activation activity and lacked enhanced binding to the chaperones, indicating a less severe phenotype. The properties of G386R were the same as those of the wild-type. Dominant-negative effects were not detected for any mutant protein. These results indicate that accumulation in the ER and binding to the chaperones correlate with the impaired signal-transduction activities of the missense mutant proteins, which may contribute to the pathogenic mechanism of ALGS. Our findings, which suggest the requirement for cell-surface localization of Jagged1 for cis-inhibition activities, also provide important information for understanding the molecular basis of Notch-signaling pathways.  相似文献   

12.
de Souza NF  Simon SM 《Biochemistry》2002,41(38):11351-11361
We have examined the effect of glycosylation on the traffic of the voltage-gated Shaker potassium channel through the secretory pathway of mammalian cells. Shaker is glycosylated on two asparagines (N259 and N263) in the first extracellular loop. Electrophysiological experiments indicate that glycosylation is not necessary for channel integrity [Santacruz-Toloza et al. (1994) Biochemistry 33, 5607]. Consistent with this, we observe that unglycosylated N259Q+N263Q mutant channel forms oligomers as efficiently as the wild type and that this occurs in the endoplasmic reticulum. We have compared the kinetics of secretory traffic of the wild-type glycosylated and the N259Q+N263Q unglycosylated channels. Surface biotinylation of newly synthesized proteins indicates that the rate of delivery of the unglycosylated channel to the cell surface is slower than that of wild type. We have further dissected channel traffic using quantitative imaging. We observe that mutant channel traffics more slowly from the endoplasmic reticulum to the Golgi than wild type at 20 degrees C. This may contribute to the slowed delivery of the mutant to the cell surface. Neither the surface fraction at steady state nor the stability of Shaker is significantly affected by glycosylation in COS cells.  相似文献   

13.
The CWH8 gene in Saccharomyces cerevisiae has been shown recently (Fernandez, F., Rush, J. S., Toke, D. A., Han, G., Quinn, J. E., Carman, G. M., Choi, J.-Y., Voelker, D. R., Aebi, M., and Waechter, C. J. (2001) J. Biol. Chem. 276, 41455-41464) to encode a dolichyl pyrophosphate (Dol-P-P) phosphatase associated with crude microsomal fractions. Mutations in CWH8 result in the accumulation of Dol-P-P, deficiency in lipid intermediate synthesis, defective protein N-glycosylation, and a reduced growth rate. A cDNA (DOLPP1, GenBank accession number AB030189) from mouse brain encoding a homologue of the yeast CWH8 gene is now shown to complement the defects in growth and protein N-glycosylation, and to correct the accumulation of Dol-P-P in the cwh8Delta yeast mutant. Northern blot analyses demonstrate a wide distribution of the DOLPP1 mRNA in mouse tissues. Overexpression of Dolpp1p in yeast, COS, and Sf9 cells produces substantial increases in Dol-P-P phosphatase activity but not in dolichyl monophosphate or phosphatidic acid phosphatase activities in microsomal fractions. Subcellular fractionation and immunofluorescence studies localize the enzyme encoded by DOLPP1 to the endoplasmic reticulum of COS cells. The results of protease sensitivity studies with microsomal vesicles from the lpp1Delta/dpp1Delta yeast mutant expressing DOLPP1 are consistent with Dolpp1p having a luminally oriented active site. The sequence of the DOLPP1 cDNA predicts a polypeptide with 238 amino acids, and a new polypeptide corresponding to 27 kDa is observed when DOLPP1 is expressed in yeast, COS, and Sf9 cells. This study is the first identification and characterization of a cDNA clone encoding an essential component of a mammalian lipid pyrophosphate phosphatase that is highly specific for Dol-P-P. The specificity, subcellular location, and topological orientation of the active site described in the current study strongly support a role for Dolpp1p in the recycling of Dol-P-P discharged during protein N-glycosylation reactions on the luminal leaflet of the endoplasmic reticulum in mammalian cells.  相似文献   

14.
15.
Mutations in the apically located Na(+)-dependent phosphate (NaPi) cotransporter, SLC34A3 (NaPi-IIc), are a cause of hereditary hypophosphatemic rickets with hypercalciuria (HHRH). We have characterized the impact of several HHRH mutations on the processing and stability of human NaPi-IIc. Mutations S138F, G196R, R468W, R564C, and c.228delC in human NaPi-IIc significantly decreased the levels of NaPi cotransport activities in Xenopus oocytes. In S138F and R564C mutant proteins, this reduction is a result of a decrease in the V(max) for P(i), but not the K(m). G196R, R468W, and c.228delC mutants were not localized to oocyte membranes. In opossum kidney (OK) cells, cell surface labeling, microscopic confocal imaging, and pulse-chase experiments showed that G196R and R468W mutations resulted in an absence of cell surface expression owing to endoplasmic reticulum (ER) retention. G196R and R468W mutants could be partially stabilized by low temperature. In blue native-polyacrylamide gel electrophoresis analysis, G196R and R468W mutants were either denatured or present in an aggregation complex. In contrast, S138F and R564C mutants were trafficked to the cell surface, but more rapidly degraded than WT protein. The c.228delC mutant did not affect endogenous NaPi uptake in OK cells. Thus, G196R and R468W mutations cause ER retention, while S138F and R564C mutations stimulate degradation of human NaPi-IIc in renal epithelial cells. Together, these data suggest that the NaPi-IIc mutants in HHRH show defective processing and stability.  相似文献   

16.
Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism.  相似文献   

17.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

18.
Cell-surface proteins are transported through the endoplasmic reticulum and Golgi apparatus en route to the plasma membrane. Previously, we have identified three point mutations in the insulin receptor gene that impair transport of the mutant receptors to the cell surface: Asn15----Lys, His209----Arg, and Phe382----Val. Furthermore, these mutations impair post-translational processing steps that normally occur as the receptors are transported through the endoplasmic reticulum and Golgi apparatus. In this study, we have demonstrated that the unprocessed Arg209 and Val382 mutant proreceptors are bound to the immunoglobulin heavy chain-binding protein (BiP) in the endoplasmic reticulum. This was demonstrated by the fact that monoclonal anti-BiP antibody coimmunoprecipitated the mutant proreceptors. Moreover, when ATP was added to the immunoprecipitates, the mutant proreceptors were released from BiP. In contrast, neither the normal human insulin receptor nor the Lys15 mutant proreceptor was coimmunoprecipitated by anti-BiP antibody. It seems likely that the Lys15 receptor also binds BiP, but that the affinity was too low to resist dissociation during the stringent washing of the immunoprecipitate. In conclusion, these observation are consistent with the hypothesis that binding to BiP explains the impaired transport of mutant receptors through the endoplasmic reticulum and Golgi apparatus to the plasma membrane.  相似文献   

19.
Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.  相似文献   

20.
Familial hypercholesterolemia is an autosomal dominant disease caused by mutations in the gene encoding the low-density lipoprotein receptor. To date, more than 900 different mutations have been described. Transport-defective mutations (class 2) causing partial or complete retention of the receptor in the endoplasmic reticulum are the predominant class of mutations. In a cell culture system (Chinese hamster ovary cells), we show that chemical chaperones are able to mediate rescue of a transport-defective mutant (G544V), and that the ability to obtain rescue is mutation dependent. In particular, the low molecular mass fatty acid derivative 4-phenylbutyrate mediated a marked increase in the transport of G544V-mutant low-density lipoprotein receptor to the plasma membrane. Thirty per cent of the mutant receptor was able to escape from the endoplasmic reticulum and reach the cell surface. The rescued receptor had reduced stability, but was found to be as efficient as the wild-type low-density lipoprotein receptor in binding and internalizing low-density lipoprotein. In addition to 4-phenylbutyrate, we also studied 3-phenylpropionate and 5-phenylvalerate, and compared their effect on rescue of the G544V-mutant low-density lipoprotein receptor with their ability to increase overall gene expression caused by their histone deacetylase inhibitor activity. No correlation was found. Our results indicate that the effect of these agents was not solely mediated by their ability to induce gene expression of proteins involved in intracellular transport, but rather could be due to a direct chemical chaperone activity. These data suggest that rescue of mutant low-density lipoprotein receptor is possible and that it might be feasible to develop pharmacologic chaperones to treat familial hypercholesterolemia patients with class 2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号