首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Brachyury gene has a critical role in the formation of posterior mesoderm and notochord in vertebrate development. A recent study showed that Brachyury is also responsible for the formation of the left-right (L-R) axis in mouse and zebrafish. However, the role of Brachyury in L-R axis specification is still elusive. Here, it is demonstrated that Brachyury is involved in L-R specification of the Xenopus laevis embryo and regulates expression of Zic3, which controls the L-R specification process. Overexpression of Xenopus Brachyury (Xbra) and dominant-negative type Xbra (Xbra-EnR) altered the orientation of heart and gut looping, concomitant with disturbed laterality of nodal-related 1 (Xnr1) and Pitx2 expression, both of which are normally expressed in the left lateral plate mesoderm. Furthermore, activation of inducible type Xbra (Xbra-GR) induces Zic3 expression within 20 min. These results suggest that a role of Brachyury in L-R specification may be the direct regulation of Zic3 expression.  相似文献   

2.
The Brachyury (T) gene is required for mesoderm formation in the mouse. In this paper we describe the cloning and expression of a Xenopus homolog of Brachyury, Xbra. As with Brachyury in the mouse, Xbra is expressed in presumptive mesodermal cells around the blastopore, and then in the notochord. We show that expression of Xbra occurs as a result of mesoderm induction in Xenopus, both in response to the natural signal and in response to the mesoderm-inducing factors activin A and basic FGF. Expression of Xbra in response to these factors is rapid, and will occur in dispersed cells and in the presence of a protein synthesis inhibitor, indicating that this is an "immediate-early" response to mesoderm induction.  相似文献   

3.
4.
In spite of abundant evidence that Wnts play essential roles in embryonic induction and patterning, little is known about the expression or activities of Wnt receptors during embryogenesis. The isolation and expression of two maternal Xenopus frizzled genes, Xfrizzled-1 and Xfrizzled-7, is described. It is also demonstrated that both can activate the Wnt/beta-catenin signaling pathway as monitored by the induction of specific target genes. Activation of the beta-Catenin pathway has previously been shown to be necessary and sufficient for specifying the dorsal axis of Xenopus. beta-Catenin is thought to work through the cell-autonomous induction of the homeobox genes siamois and twin, that in turn bind to and activate the promoter of another homeobox gene, goosecoid. However, it was found that the beta-catenin pathway regulated the expression of both endogenous goosecoid, and a goosecoid promoter construct, in a cell non-autonomous manner. These data demonstrate that maternal Frizzleds can activate the Wnt/beta-catenin pathway in Xenopus embryos, and that induction of a known downstream gene can occur in a cell non-autonomous manner.  相似文献   

5.
6.
7.
This study analyzes the function of the homeobox gene goosecoid in Xenopus development. First, we find that goosecoid mRNA distribution closely mimics the expected localization of organizer tissue in normal embryos as well as in those treated with LiCl and UV light. Second, goosecoid mRNA accumulation is induced by activin, even in the absence of protein synthesis. It is not affected by bFGF and is repressed by retinoic acid. Lastly, microinjection of goosecoid mRNA into the ventral side of Xenopus embryos, where goosecoid is normally absent, leads to the formation of an additional complete body axis, including head structures and abundant notochordal tissue. The results suggest that the goosecoid homeodomain protein plays a central role in executing Spemann's organizer phenomenon.  相似文献   

8.
Retinoic acid teratogenicity: the role of goosecoid and BMP-4.   总被引:2,自引:0,他引:2  
Retinoic acid (RA) plays a pivotal role during vertebrate development, both as morphogen and as potent teratogen. While RA function in axial development has been extensively studied, little is known about the genetic control of RA teratogenicity. The knockout of the homeobox gene goosecoid in the mouse revealed similarities to RA induced embryopathy. We show that RA treatment of mouse gastrula embryos in vitro and of E10.5 embryos in utero led to a rapid but transient down-regulation of goosecoid expression. Repression was dependent on retinoid X receptors (RXR). BMP-4 was repressed by RA-treatment as well, both in embryos and in F9 teratocarcinoma cells. Our data suggest that both goosecoid and BMP-4 function as mediators of RA teratogenicity in mouse embryos.  相似文献   

9.
10.
Bcor (BCL6 corepressor) is a widely expressed gene that is mutated in patients with X-linked Oculofaciocardiodental (OFCD) syndrome. BCOR regulates gene expression in association with a complex of proteins capable of epigenetic modification of chromatin. These include Polycomb group (PcG) proteins, Skp-Cullin-F-box (SCF) ubiquitin ligase components and a Jumonji C (Jmjc) domain containing histone demethylase. To model OFCD in mice and dissect the role of Bcor in development we have characterized two loss of function Bcor alleles. We find that Bcor loss of function results in a strong parent-of-origin effect, most likely indicating a requirement for Bcor in extraembryonic development. Using Bcor loss of function embryonic stem (ES) cells and in vitro differentiation assays, we demonstrate that Bcor plays a role in the regulation of gene expression very early in the differentiation of ES cells into ectoderm, mesoderm and downstream hematopoietic lineages. Normal expression of affected genes (Oct3/4, Nanog, Fgf5, Bmp4, Brachyury and Flk1) is restored upon re-expression of Bcor. Consistent with these ES cell results, chimeric animals generated with the same loss of function Bcor alleles show a low contribution to B and T cells and erythrocytes and have kinked and shortened tails, consistent with reduced Brachyury expression. Together these results suggest that Bcor plays a role in differentiation of multiple tissue lineages during early embryonic development.  相似文献   

11.
Members of the T-box gene family play important and diverse roles in development and disease. Here, we study the functional specificities of the Xenopus T-domain proteins Xbra and VegT, which differ in their abilities to induce gene expression in prospective ectodermal tissue. In particular, VegT induces strong expression of goosecoid whereas Xbra cannot. Our results indicate that Xbra is unable to induce goosecoid because it directly activates expression of Xom, a repressor of goosecoid that acts downstream of BMP signaling. We show that the inability of Xbra to induce goosecoid is imposed by an N-terminal domain that interacts with the C-terminal MH2 domain of Smad1, a component of the BMP signal transduction pathway. Interference with this interaction causes ectopic activation of goosecoid and anteriorization of the embryo. These findings suggest a mechanism by which individual T-domain proteins may interact with different partners to elicit a specific response.  相似文献   

12.
In the present study, we show that insulin accelerates early morphogenesis in gastrulating chick embryo explants cultured in vitro, whereas antiserum to insulin adversely affects this process. Comparison between length of body axis of control and treated embryos clearly brings out the significant acceleration of development by excess insulin (0.175 to 17.5 nM). In embryos treated with 87.5 and 175 nM insulin, a high occurrence of abnormalities is observed. Treatment of embryos with antiserum to porcine insulin results in a high percentage of abnormalities, particularly in the forming neural tube. In situ hybridization of whole embryos using digoxigenin-labeled riboprobes showed that insulin modifies the expression of crucial developmental genes within 2 hours. While Brachyury, a pan-mesodermal marker gene, ERNI, the earliest known marker for neural induction in chick, and noggin, important in neural tube patterning, are upregulated, expression of goosecoid, necessary for gastrulation movements, does not appear to be significantly altered. During the same time, insulin does not exert any mitogenic effect on chick embryonic cells as assessed by nuclear counts. These findings demonstrate that insulin plays an important role in the early morphogenesis of the chick embryo. The function of insulin appears to be mediated by specific genes which orchestrate pattern formation during early development.  相似文献   

13.
The Wnt family of secreted glycoproteins plays an integral role in embryonic development and differentiation. To explore the role of Wnt's in one aspect of differentiation, namely osteogenesis, we employed a retroviral gene transfer approach to express Wnt-3a in the multipotent murine embryonic mesenchymal cell line C3H10T1/2. We found that expression of Wnt-3a in these cells had a significant, positive effect on cell growth in serum-containing medium, in that the cells grew to very high densities compared to the control cells. Additionally, apoptosis was markedly inhibited by Wnt-3a. However, when the cells were grown in serum-deficient medium, the Wnt-3a-expressing cells arrested efficiently in G1 phase, indicating that serum growth factors were needed in addition to Wnt-3a for enhanced proliferation. Wnt-3a-expressing cells exhibited high levels of alkaline phosphatase gene expression and enzymatic activity, but did not show any matrix mineralization. Unexpectedly, basal expression of bone sialoprotein, osteocalcin, and osteopontin were markedly inhibited by Wnt-3a, as were other known target genes of Wnt-3a, such as Brachyury, FGF-10, and Cdx1. When Wnt-3a-expressing cells were treated with osteogenic supplements in the presence of BMP-2, alkaline phosphatase gene expression and activity were further elevated. Additionally, BMP-2 was able to reverse the inhibitory effect of Wnt-3a on osteocalcin and osteopontin gene expression. These results indicate that while Wnt-3a represses basal expression of some osteogenic genes, this repression can be partially reversed by BMP-2. Finally, the enhanced gene expression of alkaline phosphatase induced by Wnt-3a could be effectively suppressed by the combined action of dexamethasone and 1,25-dihydroxyvitamin D(3). These data show for the first time that Wnt-3a has an unusual effect on multipotential embryonic cells, in that it enhances cellular proliferation and expression of alkaline phosphatase, while it represses most other marker genes of osteogenic differentiation.  相似文献   

14.
15.
Homologues of the murine Brachyury gene have been shown to be involved in mesoderm formation in several vertebrate species. In frogs, the Xenopus Brachyury homologue, Xbra, is required for normal formation of posterior mesoderm. We report the characterisation of a second Brachyury homologue from Xenopus, Xbra3, which has levels of identity with mouse Brachyury similar to those of Xbra. Xbra3 encodes a nuclear protein expressed in mesoderm in a temporal and spatial manner distinct from that observed for Xbra. Xbra3 expression is induced by mesoderm-inducing factors and overexpression of Xbra3 can induce mesoderm formation in animal caps. In contrast to Xbra, Xbra3 is also able to cause the formation of neural tissue in animal caps. Xbra3 overexpression induces both geminin and Xngnr-1, suggesting that Xbra3 can play a role in the earliest stages of neural induction. Xbra3 induces posterior nervous tissue by an FGF-dependent pathway; a complete switch to anterior neural tissue can be effected by the inhibition of FGF signalling. Neither noggin, chordin, follistatin, nor Xnr3 is induced by Xbra3 to an extent different from their induction by Xbra nor is BMP4 expression differentially affected.  相似文献   

16.
17.
18.
19.
M Hahn  H Jckle 《The EMBO journal》1996,15(12):3077-3084
In vertebrate embryos, the homeobox gene goosecoid (gsc) is expressed in the gastrula organizer region and in later arising embryonic tissues including the foregut anlage. Ectopic expression and loss-of-function studies have demonstrated that Xenopus gsc elicits a dorsalizing activity that contributes to body axis formation. Here we report that the gsc gene is conserved in invertebrates. In Drosophila, D-gsc is expressed most strongly in the foregut anlage, which gives rise to the foregut proper and the stomatogastric nervous system (SNS). D-gsc expression overlaps with one of the three SNS precursor groups invaginating from the foregut anlage. Embryos mutant for D-gsc gastrulate normally but show disrupted invagination in the SNS primordium and lack one specific SNS ganglion. In addition, D-gsc mutant embryos show a less well defined defect in foregut arrangement. Our results indicate that this invertebrate homolog of gsc is not required for gastrulation but plays a role in neurogenesis in post-gastrula Drosophila embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号