首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.在氯醛糖麻醉的猫上,观察了电刺激中脑导水管周围灰质(PAG)和中缝大核(NRM)对脊髓腰段背角神经元传入活动的影响。2.按照对刺激的反应型式,在背角记录到非伤害性低阈值传入、广动力范围、伤害性热敏以及高阈值传入诱发的自发放电抑制等四类神经元。3.刺激 PAG和 NRM对记录到的多数背角神经元皮肤传入反应有明显抑制效应,而对自发放电抑制性神经元产生去抑制。4.比较刺激两脑区的抑制效应:NRM 作用较PAG 强;PAG 活动对背角伤害性反应抑制的选择性较 NRM强;阿片肽拮抗剂-纳洛酮拮抗NRM刺激的抑制。5.这些结果提示PAG和NRM对脊髓的下行抑制,可能有一部分是通过不同神经机制实现的。  相似文献   

2.
1. Two in vitro spinal cord preparations obtained from young rats (10-16 days), the transverse slice and the hemisected cord, have been utilized to examine the properties of deep dorsal horn neurones. 2. Several features have emerged: neurones respond to direct current injection with repetitive firing which is characteristically tonic in nature with little adaptation. Over the current intensities tested, no secondary firing range was apparent. 3. Graded afferent fibre stimulation produces a variety of sub- and suprathreshold postsynaptic excitatory potentials. The latencies of these potentials range from tens of milliseconds to hundreds of milliseconds, with the former predominating. 4. The majority of neurones are strongly excited by all three agonists: glutamate, quisqualate and N-methyl-D-aspartate but in addition a subpopulation of neurones with low sensitivity to glutamate and N-methyl-D-aspartate exists. 5. The implications of such properties for sensory processing within the dorsal horn are discussed.  相似文献   

3.
氯胺酮对单足致炎大鼠脊髓背角神经元活动的影响   总被引:1,自引:0,他引:1  
Guo H  Li QJ  Lu GW 《生理学报》2000,52(4):351-353
在大鼠脊髓背角用细胞外记录技术共记录到32个单位。角叉菜胶一侧足底注射致炎后,电刺激该侧足底内外侧神经激动其中A、C纤维时,脊髓背角神经元诱发放电数均显著增加;静脉注射NMDA受体拮抗剂氯胺酮后,A、C纤维刺激诱发的放电反应均显著下降甚至消失。致炎后脊髓背角深层单位出现Windup现象,静脉注射氯胺酮后该现象减轻消失。结果提示:角叉菜胶致炎导致脊髓背角神经元兴奋性升高和Windup;NMDA受体参  相似文献   

4.
In experiments on spinal cats changes in the second negative postsynaptic component (N2) of the dorsal surface potential (DSP) of the spinal cord recorded in the region of segment L7 was used as the index of inhibition of segmental dorsal horn interneurons. Conditioning and testing stimuli were applied at increasing time intervals to the popliteal and superficial peroneal nerves respectively. Changes in the N2 component were compared with changes in the N1 component of the DSP, reflecting mainly activity of nonsegmental ascending dorsal horn interneurons. After an initial short facilitation a conditioning volley of pulses evokes prolonged (over 500 msec) inhibition of the N2 component, characterized by the presence of two maxima (on the average at the 16th and 80th milliseconds) which indicate that two systems with different latent periods play a role in this inhibition. In its shape and temporal characteristics the curve of inhibition of the N2 component corresponds to the two-component dorsal root potential (DRP) recorded in spinal animals in response to stimulation of flexor afferents (FRA) [8, 19]. Together with other features, this similarity is evidence of the presynaptic nature of this inhibition. Intravenous injection of hexobarbital has a stronger action on inhibition of the N2 component, leading to a marked increase in its depth and duration. Suggestions are made regarding the functional organization of systems responsible for presynaptic inhibition of segmental dorsal horn interneurons.Deceased.Dnepropetrovsk State University. Translated from Neirofiziolgiya, Vol. 4, No. 1, pp. 75–82, January–February, 1972.  相似文献   

5.
In experiments on 5-30-day rat puppies, studies have been made of the effect of L-DOPA (100 mg/kg, intraperitoneally) on the activity of interneurones of the dorsal horn of the spinal cord as revealed from the parameters of potentials of the dorsal surface of the spinal cord. The specific pattern of reaction in 5-day animals is manifested in a succession of inhibitory inhibition and increase in the activity of neurones monosynaptically activated by low-threshold afferents. Both the amplitude and duration of polysynaptic components of the potentials of the dorsal surface are rather high. From the 7th day, deep and stable inhibition is observed which is accompanied by a decrease in the amplitude of all components of the potential of the dorsal surface. At later stages of ontogenesis, a decrease is observed in the inhibitory effect of L-DOPA on the activity of interneurones which monosynaptically contact with low- and especially high-threshold afferents; in contrast to earlier stages, but similar to adult animals, evident inhibition was revealed in the activity of interneurones which have polysynaptic contacts with high-threshold afferents and afferents of flexor reflex. Thus, within the first weeks of postnatal life, basic qualitative changes are observed in the pattern of the reaction of interneurones of the dorsal horn to exogenic catecholamines.  相似文献   

6.
We investigated inhibition of the N1-component of the spinal cord dorsal potential (CDP) evoked by experimental stimulation of the n. peroneus in spinal cats. Stimulation was carried out following two conditioning stimuli administered at different time intervals to the same or different cutaneous nerves. The interval between the last conditioning stimulus and the experimental one remained constant (20 msec). It is demonstrated that there is no dependence between weakening of inhibitory action of the second conditioning stimulus and inhibition of the dorsal horn interneurons excited by it that generate the N1-component of the CDP. It is hypothesized that mechanisms which act on the principle of negative feedback are present in the vincinity of the synaptic junctions of cutaneous afferent fibers with neurons of the substantia gelationsa, and that these mechanisms restrict the development of presynaptic inhibition during inflow of a series of afferent impulses into the cord.Dnepropetrovsk State University. Translated from Neirofiziologia, Vol. 1, No. 3, pp. 253–261, November–December, 1969.  相似文献   

7.
Mechanisms of pain arising from articular tissues   总被引:3,自引:0,他引:3  
This paper reviews the peripheral and central neural mechanisms underlying pain from articular tissues innervated by spinal and trigeminal afferents. The paper especially addresses trigeminal mechanisms related to pain from the temporomandibular joint and its associated craniofacial musculature. Recent studies have shown the existence of articular nociceptive primary afferents that project to the spinal cord dorsal horn and trigeminal brainstem complex. A particular feature of most neurones receiving these deep nociceptive afferent inputs is their responsivity also to cutaneous nociceptive afferent inputs. This suggests the involvement of these neurones not only in the detection of acute articular pain, but also in the hyperalgesia and poor localization, spread, and referral of pain that characterize many painful conditions of joints and other deep structures. While only limited information is available on related higher brain centre mechanisms, convergence and interaction between cutaneous and deep afferent inputs also seem to be a characteristic of somatosensory neurones in the thalamus and somatosensory cerebral cortex. Muscle and autonomic reflexes may be induced by such deep noxious stimuli, but the functional significance of some of these effects (e.g., in relation to clinical concepts of myofascial dysfunction) requires further study in more appropriate functional settings.  相似文献   

8.
These studies examined Fos protein expression in spinal cord neurons synaptically activated by stimulation of bladder afferent pathways after cyclophosphamide (CYP)-induced bladder inflammation. In urethan-anesthetized Wistar rats with cystitis, intravesical saline distension significantly (P 相似文献   

9.
Long-term potentiation induced by conditioning electrical stimulation of afferent fibers is a widely studied form of synaptic plasticity in the brain and the spinal cord. In the spinal cord dorsal horn, long-term potentiation is induced by a series of high-frequency trains applied to primary afferent fibers. Conditioning stimulation (CS) of sciatic nerve primary afferent fibers also induces expression of immediate early gene proteins in the lumbar spinal cord. However, the time course of immediate early gene expression and the rostral-caudal distribution of expression in the spinal cord have not been systematically studied. Here, we examined the effects of sciatic nerve conditioning stimulation (10 stimulus trains, 0.5 ms stimuli, 7.2 mA, 100 Hz, train duration 2 s, 8 s intervals between trains) on cellular expression of immediate early genes, Arc, c-Fos and Zif268, in anesthetized rats. Immunohistochemical analysis was performed on sagittal sections obtained from Th13- L5 segments of the spinal cord at 1, 2, 3, 6 and 12 h post-CS. Strikingly, all immediate early genes exhibited a monophasic increase in expression with peak increases detected in dorsal horn neurons at 2 hours post-CS. Regional analysis showed peak increases at the location between the L3 and L4 spinal segments. Both Arc, c-Fos and Zif268 remained significantly elevated at 2 hours, followed by a sharp decrease in immediate early gene expression between 2 and 3 hours post-CS. Colocalization analysis performed at 2 hours post-CS showed that all c-Fos and Zif268 neurons were positive for Arc, while 30% and 43% of Arc positive neurons were positive for c-Fos and Zif268, respectively. The present study identifies the spinal cord level and time course of immediate early gene (IEGP) expression of relevance for analysis of IEGPs function in neuronal plasticity and nociception.  相似文献   

10.
A-type potassium currents are important determinants of neuronal excitability. In spinal cord dorsal horn neurons, A-type currents are modulated by extracellular signal-regulated kinases (ERKs), which mediate central sensitization during inflammatory pain. Here, we report that Kv4.2 mediates the majority of A-type current in dorsal horn neurons and is a critical site for modulation of neuronal excitability and nociceptive behaviors. Genetic elimination of Kv4.2 reduces A-type currents and increases excitability of dorsal horn neurons, resulting in enhanced sensitivity to tactile and thermal stimuli. Furthermore, ERK-mediated modulation of excitability in dorsal horn neurons and ERK-dependent forms of pain hypersensitivity are absent in Kv4.2(-/-) mice compared to wild-type littermates. Finally, mutational analysis of Kv4.2 indicates that S616 is the functionally relevant ERK phosphorylation site for modulation of Kv4.2-mediated currents in neurons. These results show that Kv4.2 is a downstream target of ERK in spinal cord and plays a crucial role in pain plasticity.  相似文献   

11.
Previous neurophysiological experiments have shown that in rats with an acute myositis of the gastrocnemius-soleus muscle, dorsal horn neurones exhibit an increase in responsiveness to peripheral stimulation and in background activity. The present study investigated the possible correlation between changes in NADPH-diaphorase activity and neurophysiological alterations. In the animals used for the electrophysiological experiments the diaphorase activity in sections of the lumbar spinal cord was determined with the NADPH-nitroblue tetrazolium reaction. The main finding was a massive reduction in the number of diaphorase-positive cells in the superficial dorsal horn in animals with a myositis. The staining intensity in the remaining neurones was unchanged. The results are interpreted as indicating that the myositis in addition to the surgical operations represents a supramaximal input to the dorsal horn causing neurotoxic effects in diaphorase- positive neurones.  相似文献   

12.
PAM (protein associated with Myc) is a potent inhibitor of adenylyl cyclases (ACs) which is primarily expressed in neurones. Here we describe that PAM is highly expressed in dorsal horn neurones and motoneuron of the spinal cord, as well as in neurones of dorsal root ganglia in adult rats. PAM mRNA expression is differentially regulated during development in both spinal cord and dorsal root ganglia of rats, being strongest during the major respective synaptogenic periods. In adult rats, PAM expression was up-regulated in the spinal cord after peripheral nociceptive stimulation using zymosan and formalin injection, suggesting a role for PAM in spinal nociceptive processing. Since PAM inhibited Galphas-stimulated AC activity in dorsal root ganglia as well as spinal cord lysates, we hypothesized that PAM may reduce spinal nociceptive processing by inhibition of cAMP-dependent signalling. Accordingly, intrathecal treatment with antisense but not sense oligonucleotides against PAM increased basal and Galphas-stimulated AC activity in the spinal cord and enhanced formalin-induced nociceptive behaviour in adult rats. Taken together our findings demonstrate that PAM is involved in spinal nociceptive processing.  相似文献   

13.
14.
Temporal summation of second pain and long-lasting tactile-evoked aftersensations are examples of sensory phenomenons that cannot be explained on the basis of responses of primary afferents. Two distinct classes of monkey spinothalamic tract neurons have responses to controlled natural stimuli that parallel and thus could account for the above phenomenons. One class, termed wide-dynamic-range, receives excitatory effects from sensitive mechanoreceptive afferents and from various nociceptive afferents including Adelta and C mechanothermal nociceptive afferents. Another class, termed nociceptive-specific, receives excitatory effects exclusively from primary nociceptive afferents. Both classes respond with an early and late response to a single noxious heat pulse (peak temperature = 51 C). The late response, unlike C nociceptive afferents but like second pain, summates in magnitude with each successive heat pulse. Gentle moving tactile stimuli evoke long-lasting (20-56 sec) after-discharges only in wide dynamic range neurons, and are similar in duration to the tactile after-sensation evoked by similar stimuli. Both the after-discharges and after-sensations can be abruptly terminated by rubbing the affected region. Temporal summation of second pain and cutaneous after-sensations are at least partly subserved by spinal cord mechanisms within the dorsal horn and are manifested in the output of spinothalamic tract neurons.  相似文献   

15.
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.  相似文献   

16.
It is well known that prolonged exposure to morphine results in tolerance to morphine-induced antinociception. In the present study, we found that either intrathecal (i.t.) or subcutaneous (s.c.) injection of the selective metabotropic glutamate receptor 5 (mGluR5) antagonist, methyl-6-(phenylethynyl)-pyridine hydrochloride (MPEP), attenuated the development of tolerance to morphine-induced antinociception. Using the receptor binding assay, we found here that the number of mGluR5 in the mouse spinal cord was significantly increased by repeated treatment with morphine. Furthermore, repeated treatment with morphine produced a significant increase in the level of mGluR5 immunoreactivity in the dorsal horn of the mouse spinal cord. Double-labeling experiments showed that the increased mGluR5 was predominantly expressed in the neurons and sparsely expressed in the processes of astrocytes following repeated treatment with morphine. Consistent with these results, the response of Ca2+ to the selective group I mGluR agonist, 3,5-dihydroxyphenylglycine (DHPG), in cultured spinal cord neurons was potently enhanced by 3 days of in vitro treatment with morphine. These findings support the idea that the increased mGluR5 following repeated treatment with morphine leads to enhanced neuronal excitability and synaptic transmission in the dorsal horn of the spinal cord and, in turn, suppresses the morphine-induced antinociception in mice.  相似文献   

17.
The neuropeptide calcitonin gene-related peptide (CGRP) may play a role in neurogenic inflammation, tissue remodeling of the uterine cervix, promoting vasodilation, parturition, and processing of sensory information in the spinal cord. CGRP-immunoreactive nerves of the cervix and spinal cord have been studied but cellular identification of the CGRP receptor has received little attention. CGRP-receptor component protein (CGRP-RCP) is a small protein associated with the CGRP receptor; thus, immunostaining for the CGRP-RCP can be used to identify sites of the CGRP receptor. We determined sites of CGRP-RCP immunoreactivity relative to the presence of CGRP-ir nerve fibers in the female rat uterine cervix, spinal cord, and dorsal root ganglia. CGRP-RCP immunoreactivity was expressed in the dorsal horn of the spinal cord, venules of the uterine cervix, and perikarya of sensory neurons in dorsal root ganglia. CGRP-immunoreactive fibers were adjacent to CGRP-RCP-immunoreactive vessels in the cervix and among CGRP-RCP-immunoreactive structures in the dorsal horn of the spinal cord. This suggests CGRP-RCP is associated with structures innervated by CGRP nerves and these interactions may be changed in tissues in response to an appropriate stimulus.  相似文献   

18.
Houseflies (Musca domestica L.) were trained in a compound-conditioning paradigm where the conditioning stimuli were water and 1% sodium chloride solution. The unconditioned stimulus was 16% sucrose solution. A high degree of conditioning was produced. Control experiments for pseudoconditioning and sensitization revealed that the response of the flies to the procedure were due to an associative process. Experiments with double-water conditioned stimuli and with an interval between stimulus presentations indicate that the marked response to the first conditioned stimulus may be due to stimulus generalization in which the water, rather than the salt component of both stimuli served as the learning cue.  相似文献   

19.
Animals with a severe reduction in the number of afferent C-fibres as a consequence of neonatal administration of capsaicin, exhibit a number of neurological and behavioral deficits including increased nociceptive thresholds, altered somato-visceral and viscero-visceral reflexes, depressed cardiovascular and respiratory reflexes and changes in the organisation of spinal cord sensory systems. The reduction in the number of C-fibres produced by neonatal capsaicin does not cause a decrease of similar magnitude in the number of dorsal horn cells driven by the surviving C-fibres. Twenty-two per cent of dorsal horn neurones in capsaicin treated animals respond to electrical stimulation of the surviving afferent C-fibres: a reduction of only 50% from control values. Inhibitory controls on afferent C-fibre evoked responses of dorsal horn neurones are weaker in capsaicin treated rate than in control animals. The cutaneous receptive fields of some dorsal horn neurones can increase in size following stimulation of afferent C-fibres. Tonic descending inhibition on C-fibre evoked responses of dorsal horn neurones is reduced in capsaicin treated rats: fewer neurones show tonic descending inhibition in these animals and those that do are subjected to less powerful inhibitions than similar neurones from control animals. However, some central inhibitory mechanism are unchanged after neonatal capsaicin treatment, specially those that do not involve afferent C-fibres. We suggest that the nervous system develops central inhibition in response to and directed towards the excitations mediated by its afferent drives. Therefore reduced central inhibition in response to a decreased number of afferent C-fibres can compensate for the lost capacity in the signalling of peripheral noxious events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号