首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Incubation of HTC rat hepatoma cells with the synthetic glucocorticoid dexamethasone rapidly inhibits plasminogen activator (PA) activity secondary to the induction of a specific acid-stable inhibitor of plasminogen activation (Cwikel, B. J., Barouski-Miller, P.A., Coleman, P.L., and Gelehrter, T.D. (1984) J. Biol. Chem. 259, 6847-6851). We have further characterized this inhibitor with respect to its interaction with both urokinase and tissue plasminogen activator, and its protease specificity. The HTC PA inhibitor rapidly inhibits urokinase and tissue plasminogen activator with an apparent second-order rate constant of 3-5 x 10(7) M-1 X s-1. The inhibitor forms stable covalent complexes with both urokinase and tissue plasminogen activator, with which plasmin, trypsin, and factor Xa apparently do not compete. Complex formation is saturable and requires the active site of the PA. The mass of the inhibitor-PA complex is 50,000 daltons greater than that of PA alone, consistent with an Mr for the PA inhibitor of 50,000 as demonstrated directly by reverse fibrin autography. The HTC PA inhibitor does not inhibit thrombin and differs in its kinetic and biochemical properties from protease nexin.  相似文献   

3.
Cell surface binding sites for the constituent proteins of the fibrinolytic system may play a role in the localization and regulation of fibrinolysis. In the present study, specific binding of recombinant human tissue-type plasminogen activator (rt-PA) to human blood platelets was identified and characterized. 125I-labeled rt-PA was found to bind specifically, saturably, and reversibly to the surface of gel-filtered platelets, reaching equilibrium within 5 min at 22 degrees C. Scatchard analysis revealed a single class of binding sites. Unstimulated platelets bound 120,000 +/- 24,000 (mean +/- S.D.) molecules/platelet with an apparent Kd of 340 +/- 25 nM, whereas thrombin-stimulated platelets bound 290,000 +/- 32,000 molecules/platelet with an apparent Kd of 800 +/- 60 nM. Binding of 0.1 microM 125I-rt-PA was greater than 90% reversible by a 50-fold excess of unlabeled rt-PA. Binding was not inhibited by fibrinogen or single chain urokinase-type plasminogen activator, but plasminogen partially competed for binding of 125I-rt-PA to platelets (up to 40% displacement). These findings indicate that the platelet surface possesses a large number of specific, low affinity binding sites for t-PA and provide further evidence for the role of platelets in localization and regulation of fibrinolysis.  相似文献   

4.
Plasminogen activator (PA) activity was identified in the conditioned medium of two human renal carcinoma cell lines, Cur and Caki-1. PA activity of medium, following chromatography on Con A-Sepharose, was divided into effluent and eluate fractions, the latter obtained after elution with methyl mannoside. The ratio of PA activity in effluent:eluate was 90:10 for Caki-1 and 60:40 for Cur. The PA of both effluent fractions and the Caki-1 eluate fraction was of the urokinase (UK) type. Identification rested on molecular weight determination by zymography (major component with Mr 52,000 and a less prominent component of 93,000), lack of binding to fibrin, inhibition by anti-UK antibodies, and lack of inhibitory effect of anti-tissue type PA (TPA) antibodies or the Erythrina trypsin inhibitor, which inhibits TPA but not UK. PA of the Cur eluate fraction gave a more complex pattern in that it bound significantly to fibrin (like TPA), was completely inhibited by both anti-UK and anti-TPA antibodies, but was unaffected by Erythrina trypsin inhibitor. These results raise the possibility of an unusual PA-like enzyme that immunologically cross reacts with anti-UK and anti-TPA. Most of the PA of both cell lines was secreted in a latent form that could be activated by trypsin treatment. The latency appears to result largely from secretion of urokinase proenzyme, which is consistent with the Mr 52,000 of the major PA species and the insensitivity to diisopropyl fluorophosphate inhibition prior to trypsin activation. However, in addition, a UK binding component was found in the conditioned medium, which produced an Mr 93,000 component by reaction with UK.  相似文献   

5.
H Steiner  G Pohl  H Gunne  M Hellers  A Elhammer  L Hansson 《Gene》1988,73(2):449-457
A cDNA fragment encoding the human tissue-type plasminogen activator was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus downstream from the polyhedrin promoter. The induction kinetics of t-PA was followed, after infection of Spodoptera frugiperda cells, at both mRNA and protein levels. Fibrinolytically active plasminogen activator accumulated in the culture medium and reached 2.5 micrograms/ml after 120 h. The protein was compared with recombinant plasminogen activator produced in mouse cells and was found to be slightly smaller. This difference in size was found to be caused by N-linked oligosaccharides which are shorter in the recombinant activator obtained from insect cells. The molecules produced in such cells contain at least two different types of N-linked glycans, since only one out of three oligosaccharides is sensitive to endoglycosidase H. However, all glycan structures bind strongly to concanavalin A-Sepharose.  相似文献   

6.
The interaction of urokinase-type plasminogen activators with receptors on the surface of endothelial cells may play an important role in the regulation of fibrinolysis and cell migration. Therefore, we investigated whether human umbilical vein endothelial cells (HUVEC) express receptors for single-chain urokinase (scu-PA) on the cell surface and examined the effect of such binding on plasminogen activator activity. Binding of 125I-labeled scu-PA to HUVEC, performed at 4 degrees C, was saturable, reversible, and specific (k+1 4 +/- 1 X 10(6) min-1 M-1, k-1 6.2 +/- 1.4 X 10(-3) min-1, Kd 2.8 +/- 0.1 nM; Bmax 2.2 +/- 0.1 X 10(5) sites/cell; mean +/- S.E.). Binding of radiolabeled scu-PA was inhibited by both natural and recombinant wild-type scu-PA, high molecular weight two-chain u-PA (tcu-PA), catalytic site-inactivated tcu-PA, an amino-terminal fragment of u-PA (amino acids 1-143), and a smaller peptide (amino acids 4-42) corresponding primarily to the epidermal growth factor-like domain. Binding was not inhibited by low molecular weight urokinase or by a recombinant scu-PA missing amino acids 9-45. Cell-bound scu-PA migrated at its native molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of plasminogen, scu-PA bound to endothelial cells generated greater plasmin activity than did scu-PA in the absence of cells. In contrast, when tcu-PA was added directly to HUVEC, sodium dodecyl sulfate-stable complexes formed with cell or matrix-associated plasminogen activator inhibitors with a loss of plasminogen activator activity. These studies suggest that endothelial cells in culture express high affinity binding sites for the epidermal growth factor domain of scu-PA. Interaction of scu-PA with these receptors may permit plasminogen activator activity to be expressed at discrete sites on the endothelial cell membrane.  相似文献   

7.
The interaction in vivo of 125I-labeled tissue-type plasminogen activator (t-PA) with the rat liver and the various liver cell types was characterized. Intravenously injected 125I-t-PA was rapidly cleared from the plasma (t1/2 = 1 min), and 80% of the injected dose associated with the liver. After uptake, t-PA was rapidly degraded in the lysosomes. The interaction of 125I-t-PA with the liver could be inhibited by preinjection of the rats with ovalbumin or unlabeled t-PA. The intrahepatic recognition site(s) for t-PA were determined by subfractionation of the liver in parenchymal, endothelial, and Kupffer cells. It can be calculated that parenchymal cells are responsible for 54.5% of the interaction of t-PA with the liver, endothelial cells for 39.5%, and Kupffer cells for only 6%. The association of t-PA with parenchymal cells was not mediated by a carbohydrate-specific receptor and could only be inhibited by an excess of unlabeled t-PA, indicating involvement of a specific t-PA recognition site. The association of t-PA with endothelial cells could be inhibited 80% by the mannose-terminated glycoprotein ovalbumin, suggesting that the mannose receptor plays a major role in the recognition of t-PA by endothelial liver cells. An excess of unlabeled t-PA inhibited the association of 125I-t-PA to endothelial liver cells 95%, indicating that an additional specific t-PA recognition site may be responsible for 15% of the high affinity interaction of t-PA with this liver cell type. It is concluded that the uptake of t-PA by the liver is mainly mediated by two recognition systems: a specific t-PA site on parenchymal cells and the mannose receptor on endothelial liver cells. It is suggested that for the development of strategies to prolong the half-life of t-PA in the blood, the presence of both types of recognition systems has to be taken into account.  相似文献   

8.
The synthesis of plasminogen activators and inhibitors in endothelial cells is highly regulated by hormones, drugs and growth factors. The present study evaluates the effect of retinoic acid on the synthesis of tissue-type plasminogen activator (t-PA) and of plasminogen activator inhibitor-1 (PAI-1) by cultured human umbilical vein endothelial cells (HUVEC). Retinoic acid produced a time- and concentration-dependent increase in the secretion of t-PA-related antigen but not of PAI-1 related antigen into the culture medium. A maximal sevenfold increase of t-PA antigen after 24 h was observed with 10 microM and a half-maximal increase with 0.1 microM retinoic acid. Retinoic acid induced a time-dependent increase of the t-PA mRNA, with a maximum at 8 h and returning to normal at 24 h. The protein kinase inhibitor H7 decreased the t-PA antigen induced by both retinoic acid and phorbol 12-myristate 13-acetate. These results suggest that treatment of HUVEC with retinoic acid increases t-PA production by a pathway which, at some level, involves protein kinases. Thus, retinoic acid induces t-PA synthesis in the absence of altered PAI-1 synthesis, which may enhance the fibrinolytic potential of the endothelium.  相似文献   

9.
Urokinase-type plasminogen activator (uPA) and one of its inhibitors, the PAI-1, are involved in the proteolytic cascade of matrix degradation during in vivo morphogenesis or metastasis. In the present study, we have characterized the in vitro morphological behavior of human normal and malignant mammary epithelial cells and determined the levels of uPA activity and PAI-1 during these events. Two-dimensional cultures in the presence of inductive fibroblast-conditioned medium (CM) allowed migration of HBL-100 cells and MDA-MB-231 cells. Normal human mammary epithelial cells (HMEC) and MCF-7 cells failed to migrate under these conditions. The epithelial cell migration correlated with an increase in the uPA activity whereas their immobility correlated with both increases in uPA activity and PAI-1 level. In three-dimensional cultures in collagen gel, fibroblasts or fibroblast CM induced branching tubular morphogenesis to HMEC, cord-like extensions to HBL-100 cells and a greater invasiveness ability to MDA-MB-231 cells. These events correlated with an increased uPA activity. In contrast, no morphological rearrangement was observed in MCF-7 cells and this correlated with both increases in uPA activity and PAI-1 level. Altogether, these results show that the in vitro mammary epithelial behavior is under the influence of mesenchymal inductive signals and is in agreement with modifications of uPA activity and PAI-1 levels. Our culture system gives a suitable model to study the mechanisms of mammary development and metastasis and to highlight the involvement of proteases and their inhibitors in cell-cell positioning and cell-matrix reorganization.  相似文献   

10.
11.
Tissue-type plasminogen activator (t-PA) from human melanoma cells (Bowes) was purified by immunosorbent chromatography on affinospecific polyclonal antibodies and gel filtration in the presence of KSCN. The immunosorbent eluate contained three major components of greater than 200, 85 and 65 kDa, respectively. The 65 kDa t-PA component could be separated by gel filtration on Ultrogel AcA44 in the presence of KSCN to a pure preparation yielding a unique N-terminal amino acid sequence. Immunoblot analysis, using affinospecific antibodies against t-PA, was a specific and sensitive method to identify different types of t-PA (I-IV), as well as t-PA-inhibitor complexes and degradation products in unstimulated melanoma cell culture fluids. Furthermore, the t-PA preparations, produced by phorbol ester-treated melanoma cells, were free of type IV and thus differed physiochemically from the constitutively produced t-PA preparations. The composition of t-PA from mammalian cell cultures is thus more complex than hitherto described.  相似文献   

12.
组织型纤溶酶原激活剂的纯化制备   总被引:1,自引:0,他引:1  
简述了用于大规模生产组织型纤溶酶原激活剂(tPA)的重组动物细胞及其培养工艺。从重组tPA的大规模、快速纯化的角度考虑,对tPA的纯化制备方法进行了简要评述。  相似文献   

13.
The formation and release of covalent complexes between tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) limits the application of equilibrium radioligand binding analysis to characterize the interaction between t-PA and human umbilical vein endothelial cell (HUVEC) monolayers. To avoid this difficulty, we used a recombinant mutant of t-PA, S478A rt-PA, in which alanine has been substituted for the active-site serine. Although the mutant is incapable of covalently reacting with PAI-1, 125I-labeled S478A rt-PA binding to HUVEC monolayers is specific and reversible and is characterized by a high affinity (Kd of 1.5 nM) and a large number of sites (1.5 x 10(6)/cell). This binding was shown to occur through noncovalent interaction with PAI-1 in the HUVEC monolayer by the fact that a monoclonal anti-PAI-1 antibody (MA-7D4) completely blocked S478A rt-PA binding. Two solution-phase assays with recombinant PAI-1 (rPAI-1) confirmed this noncovalent interaction: complexes between 125I-S478A rt-PA and rPAI-1 could be isolated by immunoprecipitation with anti-PAI-1 antibodies, and S478A rt-PA competed with rt-PA for inactivation by rPAI-1. In contrast diisopropylphosphate rt-PA (in which the active site serine is chemically modified) showed minimal binding to HUVEC monolayers, as a result of impaired interaction with PAI-1, in the two assays. Thus, both wild-type rt-PA and S478A rt-PA interact with the HUVEC monolayer through PAI-1. With rt-PA this results in the formation of covalent rt-PA.PAI-1 complexes that are released from the monolayer into the supernatant. With S478A rt-PA this results in the formation of noncovalent complexes that remain associated with the HUVEC monolayer, thereby identifying a large pool of reactive PAI-1 molecules in the monolayer.  相似文献   

14.
The experiments described in this paper were designed to examine the specific binding of tissue plasminogen activator (tPA) to cultured human aortic endothelial (HAE) cells. When 125I-labelled tPA was incubated with the cells at 4 degrees C, binding was found to plateau within 90 min after incubations were begun. Binding was saturable and the bound enzyme dissociated from the sites with a half-time of approx. 48 min. Scatchard analyses were performed using tPA molecules isolated from human melanoma and colon cells as well as from C127 and Chinese hamster ovary cells that had been transfected with the human tPA gene. These enzymes showed very similar binding characteristics in spite of the fact that they differ substantially in the types of sugars which comprise their side chains. Neither the chainedness of the molecules (one-chain or two-chain) nor the sites at which they are glycosylated (type I or type II) appear to affect their ability to interact with binding sites. The tPA molecules were found to have an average equilibrium dissociation constant of (1.15 +/- 0.10) x 10(-9) M and HAE cells appeared to have a single, homogeneous population of independent binding sites present at a concentration of (1.57 +/- 0.13) x 10(6) sites per cell. Lowering the pH of the binding buffer from 7.4 to 6.5 resulted in a reversible increase in specific binding of between 2-fold and 7-fold depending upon the particular preparation of cells. Preincubation of tPA with plasminogen activator inhibitor 1 (PAI-1) was found to have little effect on binding, suggesting that tPA interacts at sites distinct from surface-bound PAI-1. No evidence for either internalization or degradation of tPA was observed in assays run at 37 degrees C. This suggests that, like urokinase, tPA remains on cell surfaces for an extended period of time.  相似文献   

15.
Positioned at the boundary between intra- and extravascular compartments, endothelial cells may influence many processes through their production of plasminogen activators (PA). Available data have shown that tissue-type plasminogen activator (t-PA) is the major form produced by human endothelial cells. We have compared the molecular forms of PA produced by human endothelial cells from different microvascular and large vessel sources including two different sites within the circulation of the kidney. Using combined immunoactivity assays specific for u-PA and t-PA activity and antigen, we found that both human renal microvascular and renal artery endothelial cells produced high levels of u-PA antigen (60.48 ng/10(5) cells/24 h and 50.42 ng/10(5) cells/24 h, respectively) and corresponding levels of u-PA activity after activation with plasmin. Activity was not evident before plasmin activation, showing that the u-PA produced is almost exclusively as single chain form U-PA. In contrast, human omental microvascular endothelial cells and human umbilical vein endothelial cells produced exclusively t-PA (8.80 ng/10(5) cells/24 h and 2.17 ng/10(5) cells/24 h, respectively). Neither endothelial cell type from human kidney produced plasminogen activator inhibitor, as determined by reverse fibrin autography and titration assays. Agents including phorbol ester, thrombin, and dexamethasone were shown to regulate the renal endothelial cell production and mRNA expression of both u-PA and t-PA. Among the macro- and microvascular endothelial cells tested, only those from the renal circulation produced high levels of single chain form U-PA, suggesting the vascular bed of origin determines the expression of plasminogen activators.  相似文献   

16.
To define determinants of interactions of tissue-type plasminogen activator (t-PA) with plasminogen activator inhibitor type-1 (PAI-1), we utilized site-directed mutagenesis to substitute either threonine or glycine for the active-site serine of tissue-type plasminogen activator. Assays of conditioned media of transfected cells demonstrated that the threonine substitution markedly decreased but did not entirely abolish plasminogen activating activity. In contrast, the glycine substitution yielded a mutant with absolutely no detectable plasminogen activating activity. Wild-type t-PA formed stable complexes with PAI-1. However, even when exogenous inhibitor was present in the medium or purified mutant was added to plasma that had been rendered PAI-1-rich in vivo, the mutants were present in the free form exclusively judging from results of fibrin autography and Western blot analysis. Thus, despite maintenance of some residual plasminogen-activating activity associated with preservation of the hydroxyl group at the active site, the threonine mutant did not form stable complexes with inhibitor. The glycine mutant, developed so that steric hindrance or other unfavorable interactions at the modified active site would be minimal, was similarly incapable of forming complexes with PAI-1. These results show that the presence of an active site serine residue is necessary for formation of stable complexes between t-PA and PAI-1.  相似文献   

17.
An established cell line (OC-1) was obtained from human ovarian tissue, which yielded a high concentration of plasminogen activator (PA) in the culture medium. The PA (OC-1-PA) produced by the cell line was purified and compared with urokinase (UK), proform of UK (pro-UK), and tissue-type PA (t-PA) purified from human melanoma cells (Bowes). OC-1-PA was purified by Zn chelate-Sepharose affinity chromatography followed by high-performance liquid chromatography with a Zn chelate-5PW column and with a p-amino-benzamidine-5PW column, giving a yield of 58.3% and a purification factor of 15,439. This purified material revealed a single band of Mr 55,000 on sodium dodecylsulfate polyacrylamide gel electrophoresis in the presence or absence of reducing agents. Electrophoretic enzymography demonstrated that the Mr 55,000 protein band had a plasminogen-dependent fibrinolytic activity. Treatment with plasmin did not change the Mr even in the presence of reducing agents. These results suggest that OC-1-PA has a single-chain structure protected from protease degradation, which is completely different from UK. The activator had higher affinities for lysine and fibrin than those of UK or pro-UK. An immunological study demonstrated that OC-1-PA cross-reacted with anti-UK IgG but not with anti-t-PA IgG. All these findings indicate that OC-1-PA belongs immunologically to the UK type, but its structure differs from that of UK.  相似文献   

18.
Plasma concentrations of natriuretic peptides increase in some pathological conditions, but very little is known about the effect of these vasodilator peptides on the regulation of the blood coagulation system. The fundamental role in the regulation of fibrinolysis is played by plasminogen activator inhibitor type 1 (PAI-1). Recent studies demonstrate that natriuretic peptides can modulate PAI-1 expression in bovine aortic smooth muscle cells and rat aortic endothelial cells. In this report, we tested the effect of natriuretic peptides on PAI-1 expression in the human endothelial cell line (EA.hy 926). For this purpose, we treated the cell cultures with ANP, BNP and CNP, and modulation of PAI-1 synthesis was evaluated. We compared the effect of natriuretic peptides on synthesis and release of PAI-1 in unstimulated cells, and after activation with tumour necrosis factor alpha (TNFalpha). Natriuretic peptides abolished TNFalpha - induced upregulation of PAI-1 expression at both the PAI-1 mRNA and the antigen levels. The inhibitory efficiency was higher in the case of CNP when compared to that produced by ANP and BNP, particularly when TNFalpha-stimulated cells were used. We observed an inhibition of stimulatory effect of TNFalpha on PAI-1 expression also at the level of the PAI-1 promoter in cells transfected with a PAI-1 promoter fragment (+71 to -800). The PAI-1 promoter activity was markedly inhibited by C-type natriuretic peptide, already at a very low (0.001 micro M) concentration of the peptide.  相似文献   

19.
20.
The human tissue plasminogen activator gene   总被引:28,自引:0,他引:28  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号