首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.
Apoptotic DNA degradation could be initiated by the accumulation of single-strand (ss) breaks in vulnerable chromatin regions, such as base unpairing regions (BURs), which might be preferentially targeted for degradation by both proteases and nucleases. We tested this hypothesis in anti-Fas-treated apoptotic Jurkat cells. Several nuclear proteins known for their association with both MARs and the nuclear matrix, that is, PARP, NuMA, lamin B and SATB1, were degraded, but the morphological rearrangement of the BUR-binding SATB1 protein was one of the earliest detected changes. Subsequently, we have identified several genes containing sequences homologous to the 25 bp BUR element of the IgH gene, a known SATB1-binding site, and examined the integrity of genomic DNA in their vicinity. Multiple ss breaks were found in close proximity to these sites relative to adjacent regions of DNA. Consistent with our prediction, the results indicated that the initiation of DNA cleavage in anti-Fas-treated Jurkat cells occurred within the BUR sites, which likely became accessible to endonucleases due to the degradation of BUR-binding proteins.  相似文献   

2.
Human fibroblasts transformed with an adenovirus-5/simian virus 40 recombinant construct (Ad5/SV40) were analyzed to determine the chromosomal site(s) of virus integration. This was firstly done by in situ hybridization using metaphase and prometaphase chromosomes and 125I-labeled Ad5 DNA. Out of seven transformed cell lines (six of clonal origin and one uncloned), six were proven to have integrated the viral genome at the short- or the long-subtelomeric regions of autosome 1, two regions known to include chromosomal modification sites induced by acute infection with Ad12. Characterization of the integration sites was carried out by restriction analysis. Transformed cell lines with the same major chromosomal integration site were found to have the viral genome inserted in restriction fragments of different size, indicating that viral integration has occurred at different sites within a relatively small chromosomal region. Molecular studies carried out on one of the transformed cell lines (H13.1) gave an independent confirmation of the viral integration at the subterminal region of autosome 1 short arm. Nucleotide sequencing at this cellular-viral junction has shown that the virus has integrated within tandemly repeated Alu-like elements and that the cellular flanking sequences have several homologies with variable number of tandem repeats core sequences. Many possible open reading frames were identified in the DNA segment adjacent to the Alu-like elements.  相似文献   

3.
Special AT-rich sequence-binding protein 1 (SATB1), a DNA-binding protein expressed predominantly in thymocytes, recognizes an ATC sequence context that consists of a cluster of sequence stretches with well-mixed A's, T's, and C's without G's on one strand. Such regions confer a high propensity for stable base unpairing. Using an in vivo cross-linking strategy, specialized genomic sequences (0.1–1.1 kbp) that bind to SATB1 in human lymphoblastic cell line Jurkat cells were individually isolated and characterized. All in vivo SATB1-binding sequences examined contained typical ATC sequence contexts, with some exhibiting homology to autonomously replicating sequences from the yeast Saccharomyces cerevisiae that function as replication origins in yeast cells. In addition, LINE 1 elements, satellite 2 sequences, and CpG island–containing DNA were identified. To examine the higher-order packaging of these in vivo SATB1-binding sequences, high-resolution in situ fluorescence hybridization was performed with both nuclear “halos” with distended loops and the nuclear matrix after the majority of DNA had been removed by nuclease digestion. In vivo SATB1-binding sequences hybridized to genomic DNA as single spots within the residual nucleus circumscribed by the halo of DNA and remained as single spots in the nuclear matrix, indicating that these sequences are localized at the base of chromatin loops. In human breast cancer SK-BR-3 cells that do not express SATB1, at least one such sequence was found not anchored onto the nuclear matrix. These findings provide the first evidence that a cell type–specific factor such as SATB1 binds to the base of chromatin loops in vivo and suggests that a specific chromatin loop domain structure is involved in T cell–specific gene regulation.  相似文献   

4.
5.
Numerous flanking nucleotide sequences from two primate interspersed repetitive DNA families have been aligned to determine the integration site preferences of each repetitive family. This analysis indicates that both the human Alu and galago Monomer families were preferentially inserted into short d(A+T)-rich regions. Moreover, both primate repeat families demonstrated an orientation specific integration with respect to dA-rich sequences within the flanking direct repeats. These observations suggest that a common mechanism exists for the insertion of many repetitive DNA families into new genomic sites. A modified mechanism for site-specific integration of primate repetitive DNA sequences is provided which requires insertion into dA-rich sequences in the genome. This model is consistent with the observed relationship between galago Type II subfamilies suggesting that they have arisen not by mere mutation but by independent integration events.  相似文献   

6.
7.
8.
9.
An essential component of the HIV-1 life cycle involves insertion in the genome of an infected cell. The site of HIV-1 integration has the potential to disrupt a gene and perturb a normal cellular function. To begin to address whether disease pathogenesis may correlate with the site of insertion, flanking cellular sequences at these HIV integrated regions were directly amplified from peripheral blood mononuclear cells DNA from a broad range of infected individuals using an inverse polymerase chain reaction strategy. Amplified flanking regions were sequenced and examined for similarity to the nucleic acid database. In this group of analyzed samples, the HIV-1 provirus was inserted within non-coding regions throughout the genome of the infected host, in which 7/14 sites were positioned in close proximity to different Alu repetitive elements while 2/14 sites were located within intron sequences. Insertions were also detected at sites without a specific gene designation but not within short tandem repetitive sequences, telomeres or centromeric repeat regions. Altogether, it is expected that this approach will yield new information on sites of integration by HIV-1 that may be associated with the pathogenic manifestations of disease progression.  相似文献   

10.
11.
12.
13.
14.
15.
Summary Hybridization experiments indicated that the maize genome contains a family of sequences closely related to the Ds1 element originally characterized from theAdh1-Fm335 allele of maize. Examples of these Ds1-related segments were cloned and sequenced. They also had the structural properties of mobile genetic elements, i.e., similar length and internal sequence homology with Ds1, 10- or 11-bp terminal inverted repeats, and characteristic duplications of flanking genomic DNA. All sequences with 11-bp terminal inverted repeats were flanked by 8-bp duplications, but the duplication flanking one sequence with 10-bp inverted repeats was only 6 bp. Similar Ds1-related sequences were cloned fromTripsacum dactyloides. They showed no more divergence from the maize sequences than the individual maize sequences showed when compared with each other. No consensus sequence was evident for the sites at which these sequences had inserted in genomic DNA.  相似文献   

16.
17.
18.
Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic.  相似文献   

19.
In Drosophila, dosage compensation is controlled by the male-specific lethal (MSL) complex consisting of MSL proteins and roX RNAs. The MSL complex is specifically localized on the male X chromosome to increase its expression approximately 2-fold. We recently proposed a model for the targeted assembly of the MSL complex, in which initial binding occurs at approximately 35 dispersed chromatin entry sites, followed by spreading in cis into flanking regions. Here, we analyze one of the chromatin entry sites, the roX1 gene, to determine which sequences are sufficient to recruit the MSL complex. We found association and spreading of the MSL complex from roX1 transgenes in the absence of detectable roX1 RNA synthesis from the transgene. We mapped the recruitment activity to a 217 bp roX1 fragment that shows male-specific DNase hypersensitivity and can be preferentially cross-linked in vivo to the MSL complex. When inserted on autosomes, this small roX1 segment is sufficient to produce an ectopic chromatin entry site that can nucleate binding and spreading of the MSL complex hundreds of kilobases into neighboring regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号