首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spermatogenesis is a complex process. Duringspermatogenesis, the production of sperm occurs withinthe testicular seminiferous tubules through three separatedphases. First of all, diploid germ cells, primitivespermatogonia, will self renew to amplify and producetypes A and B spermatogonia. Type B spermatogonia willdifferentiate into primary spermatocytes. Then, meioticdivisions of spermatocytes will produce round spermatids.Finally, after a series of biochemical and morphologicalchanges, sper…  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The nuclear lamina is a karyoskeletal structure located at the nuclear periphery and intimately associated with the inner nuclear membrane. It is composed of a multigene family of proteins, the lamins, which show a conspicuous cell type-specific expression pattern. The functional role of lamins has not been definitively established but available information indicates that they are involved in the organization of nuclear envelope and interphase chromatin. Spermatogenesis is characterized, among other features, by stage-specific changes in chromatin organization and function. These changes are accompanied by modifications in the organization and composition of the nuclear lamina. In previous experiments we have determined that rat spermatogenic cells express a lamin closely related, if not identical, to lamin B1 of somatic cells; whereas rat somatic lamins A, C, D and E were not detected. Considering that chromatin reorganizations during spermatogenesis may be directly or indirectly related to changes of the nuclear lamina we have decided to further investigate lamin expression during this process. Here we report on the identification of a 52 kDa protein of the rat which, according to immunocytochemical and biochemical data, appears to be a novel nuclear lamin. Using meiotic stage-specific markers, we have also demonstrated that this short lamin is selectively expressed during meiotic stages of spermatogenesis.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Niemann–Pick C (NPC) disease is a lethal neurodegenerative disorder affecting cellular sterol trafficking. Besides neurodegeneration, NPC patients also exhibit other pleiotropic conditions, indicating that NPC protein is required for other physiological processes. Previous studies indicated that a sterol shortage that in turn leads to a shortage of steroid hormones (for example, ecdysone in Drosophila) is likely to be the cause of NPC disease pathology. We have shown that mutations in Drosophila npc1, one of the two NPC disease-related genes, leads to larval lethal and male infertility. Here, we reported that npc1 mutants are defective in spermatogenesis and in particular in the membrane-remodeling individualization process. Interestingly, we found that ecdysone, the steroid hormone responsible for the larval lethal phenotype in npc1 mutants, is not required for individualization. However, supplying 7-dehydrocholesterol can partially rescue the male infertility of npc1 mutants, suggesting that a sterol shortage is responsible for the spermatogenesis defects. In addition, the individualization defects of npc1 mutants were enhanced at high temperature, suggesting that the sterol shortage may lead to temperature-sensitive defects in the membrane-remodeling process. Together, our study reveals a sterol-dependent, ecdysone-independent mechanism of NPC1 function in Drosophila spermatogenesis.  相似文献   

19.
Identification of a novel male germ cell-specific gene TESF-1 in mice   总被引:7,自引:0,他引:7  
Mammalian spermatogenesis is precisely regulated by many germ cell-specific factors. In search for such a germ cell-specific factor, we have identified a novel mouse gene testis-specific factor 1 (TESF-1). Messenger RNA of TESF-1 was found only in the testis and its expression appeared to be regulated in a developmental manner. Further analysis demonstrated that the expression of TESF-1 was specifically in male germ cells, supported by the observation that we were not able to detect the TESF-1 mRNA from at/at homozygous mutant testes, which lack germ cells. The deduced amino acid sequence of TESF-1 contains a leucine-zipper motif, a potential nuclear localization signal, and two cAMP- and cGMP-dependent protein kinase phosphorylation sites. The green fluorescent protein (GFP)-tagged TESF-1 fusion protein was expressed in COS-7 cells and localized primarily in the nucleus. Taken together, these results indicate that TESF-1 is a novel male germ cell-specific gene, and its protein product may function as a nuclear factor involved in the regulation of spermatogenesis.  相似文献   

20.
Tektins comprise a family of filament-forming proteins that are known to be coassembled with tubulins to form ciliary and flagellar microtubules. A new member of the tektin gene family was cloned from the human fetal brain cDNA library. We hence named it the human TEKTIN1 gene. TEKTIN1 cDNA consists of 1375 bp and has a putative open reading frame encoding 418 amino acids. The predicted protein is 48.3 kDa in size, and its amino acid sequence is 82% identical to that of the mouse, rat, and dog. One conserved peptide RPNVELCRD was observed at position number 323–331 of the amino acid sequence, which is a prominent feature of tektins and is likely to represent a functionally important protein domain. TEKTIN1 gene was mapped to the human chromosome 17 by BLAST search, and at least eight exons were found. Northern blot analysis indicated that TEKTIN1 was predominantly expressed in testis. By in-situ hybridization analysis, TEKTIN1 mRNA was localized to spermatocytes and round spermatids in the seminiferous tubules of the mouse testis, indicating that it may play a role in spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号