首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cystatins are cysteine proteinase inhibitors,We found two expression sequence tags (ESTs),CA463109 and AV042522,from a mouse testis library using Digital differential display (DDD).By electricalhybridization,a novel gene,Cymgl(GenBank accession No.AY600990),which has a full length of 0.78 kb,and contains four exons and three introns,was cloned from a mouse testis eDNA library.The gene is locatedin the 2G3 area of chromosome 2.The full eDNA encompasses the entire open reading frame,encoding 141amino acid residues.The protein has a cysteine protease inhibitor domain that is related to the family 2cystatins but lacks critical consensus sites important for cysteine protease inhibition.These characteristicsare seen in the CRES subfamily,which are related to the family 2 cystatins and are expressed specifically inthe male reproductive tract.CYMG1 has a 44%(48/108)identity with mouse CRES and 30%(42/140)identity with mouse cystatin C.Northern blot analysis showed that the Cymgl is specifically expressed inadult mouse testes.Cell location studies showed that the GFP-tagged CYMG 1 protein was localized in thecytoplasm of HeLa cells,lmmunohistochemistry revealed that the CYMG1 protein was expressed in mousetestes spermatogonium,spermatocytes,round spermatids,elongating spermatids and spermatozoa.RT-PCRresults also showed that Cymgl was expressed in mouse testes and spermatogonium.The Cymgl expressionlevel varied in different developmental stages:it was low 1 week postpartum,steadily increased 2 to 5 weekspostpartum,and was highest 7 weeks postpartum.The expression level at 5 weeks postpartum was main-tained during 13 to 57 weeks postpartum.The Cymgl expression level in the testes over different develop-mental stages correlates with the mouse spermatogenesis and sexual maturation process.All these indicatethat Cymgl might play an important role in mouse spermatogenesis and sexual maturation. Cystatins are cysteine proteinase inhibitors,We found two expression sequence tags(ESTs),CA463109 and AV042522,from a mouse testis library using Digital differential display (DDD).By electricalhybridization,a novel gene,Cymgl(GenBank accession No.AY600990),which has a full length of 0.78 kb,and contains four exons and three introns,was cloned from a mouse testis eDNA library.The gene is locatedin the 2G3 area of chromosome 2.The full eDNA encompasses the entire open reading frame,encoding 141amino acid residues.The protein has a cysteine protease inhibitor domain that is related to the family 2cystatins but lacks critical consensus sites important for cysteine protease inhibition.These characteristicsare seen in the CRES subfamily,which are related to the family 2 cystatins and are expressed specifically inthe male reproductive tract.CYMG1 has a 44%(48/108)identity with mouse CRES and 30%(42/140)identity with mouse cystatin C.Northern blot analysis showed that the Cymgl is specifically expressed inadult mouse testes.Cell location studies showed that the GFP-tagged CYMG 1 protein was localized in thecytoplasm of HeLa cells,lmmunohistochemistry revealed that the CYMG1 protein was expressed in mousetestes spermatogonium,spermatocytes,round spermatids,elongating spermatids and spermatozoa.RT-PCRresults also showed that Cymgl was expressed in mouse testes and spermatogonium.The Cymgl expressionlevel varied in different developmental stages:it was low 1 week postpartum,steadily increased 2 to 5 weekspostpartum,and was highest 7 weeks postpartum.The expression level at 5 weeks postpartum was main-tained during 13 to 57 weeks postpartum.The Cymgl expression level in the testes over different develop-mental stages correlates with the mouse spermatogenesis and sexual maturation process.All these indicatethat Cymgl might play an important role in mouse spermatogenesis and sexual maturation.  相似文献   

3.
Cystatins are cysteine proteinase inhibitors. We found two expression sequence tags (ESTs), CA463109 and AV042522, from a mouse testis library using Digital differential display (DDD). By electrical hybridization, a novel gene, Cymg1 (GenBank accession No. AY600990), which has a full length of 0.78kb, and contains four exons and three introns, was cloned from a mouse testis cDNA library. The gene is located in the 2G3 area of chromosome 2. The full cDNA encompasses the entire open reading frame, encoding 141 amino acid residues. The protein has a cysteine protease inhibitor domain that is related to the family 2 cystatins but lacks critical consensus sites important for cysteine protease inhibition. These characteristics are seen in the CRES subfamily, which are related to the family 2 cystatins and are expressed specifically in the male reproductive tract. CYMG1 has a 44% (48/108) identity with mouse CRES and 30% (42/140) identity with mouse cystatin C. Northern blot analysis showed that the Cymg1 is specifically expressed in adult mouse testes. Cell location studies showed that the GFP-tagged CYMG1 protein was localized in the cytoplasm of HeLa cells. Immunohistochemistry revealed that the CYMG1 protein was expressed in mouse testes spermatogonium, spermatocytes, round spermatids, elongating spermatids and spermatozoa. RT-PCR results also showed that Cymg1 was expressed in mouse testes and spermatogonium. The Cymg1 expression level varied in different developmental stages: it was low 1 week postpartum, steadily increased 2 to 5 weeks postpartum, and was highest 7 weeks postpartum. The expression level at 5 weeks postpartum was maintained during 13 to 57 weeks postpartum. The Cymg1 expression level in the testes over different developmental stages correlates with the mouse spermatogenesis and sexual maturation process. All these indicate that Cymg1 might play an important role in mouse spermatogenesis and sexual maturation.  相似文献   

4.
A novel mouse gene, mTSARG7 (GenBank accession No. AY489184), with a full cDNA length of 2279 bp and containing 12 exons and.ll introns, was cloned from a mouse expressed sequence tag (GenBank accession No. BE644543) that was significantly up-regulated in cryptorchidism. The gene was located in mouse chromosome 8A1.3 and encoded a protein containing 403 amino acid residues that was a new member of the acyltransferase family because the sequence contained the highly conserved phosphate acyltransferase (PlsC) domain existing in all acyltransferase-like proteins. The mTSARG7 protein and AU041707 protein shared 83.9% identity in 402 amino acid residues. Expression of the mTSARG7 gene was restricted to the mouse testis. The results of the in situ hybridization analysis revealed that the mTSARG7 mRNA was expressed in mouse spermatogonia and spermatocytes. Subcellular localization studies showed that the EGFPtagged mTSARG7 protein was localized in the cytoplasm of GC-1 spg cells. The mTSARG7 mRNA expression was initiated in the mouse testis in the second week after birth, and the expression level increased steadily with spermatogenesis and sexual maturation of the mouse. The results of the heat stress experiment showed that the mTSARG7 mRNA expression gradually decreased as the heating duration increased. The pcDNA3.1 Hygro(-)/mTSARG7 plasmid was constructed and introduced into GC- 1 spg cells by liposome transfection. The mTSARG7 can accelerate GC-1 spg cells, causing them to traverse the S-phase and enter the G2-phase, compared with the control group where this did not occur as there was no transfection of mTSARG7. In conclusion, our results suggest that this gene may play an important role in spermatogenesis and the development of cryptorchid testes, and is a testis-specific apoptosis candidate oncogene.  相似文献   

5.
6.
NYD-SP16, a novel gene associated with spermatogenesis of human testis   总被引:15,自引:0,他引:15  
By hybridizing human adult testis cDNA microarrays with human adult and embryo testis cDNA probes, a novel human testis gene NYD-SP16 was identified. NYD-SP16 expression was 6.44-fold higher in adult testis than in fetal testis. NYD-SP16 contains 1595 base pairs (bp) and a 762-bp open reading frame encoding a 254-amino acid protein with 73% amino acid sequence identity with the mouse testis homologous protein. The NYD-SP16 gene was localized to human chromosome 5q14. The deduced structure of the NYD-SP16 protein contains one transmembrane domain, which was confirmed by GFP/NYD-SP16 fusion protein expression in the cytomembrane of the transfected human choriocarcinoma JAR cells, suggesting that it is a transmembrane protein. Multiple tissue distribution indicated that NYD-SP16 mRNA is highly expressed in the testes and pancreas, with little or no expression elsewhere. Further analysis of abnormal expression in infertile male patients revealed complete absence of NYD-SP16 in the testes of patients with Sertoli-cell-only syndrome and variable expression in patients with spermatogenic arrest. Homologous gene expression in mouse testis was confirmed in spermatogenic cells by in situ hybridization. The results of cDNA microarray, in situ hybridization, and semiquantitative polymerase chain reaction in mouse testis of different stages indicated that NYD-SP16 expression is developmentally regulated. These results suggest that the putative NYD-SP16 protein may play an important role in testicular development/spermatogenesis and may be an important factor in male infertility.  相似文献   

7.
8.
We used differential display in combination with complementary DNA (cDNA) cloning approach to isolate a novel rat gene designated as spetex-1, which had an open reading frame of 1,668-length nucleotides encoding a protein of 556 amino acids. Spetex-1 mRNA was highly expressed in testis, and weekly expressed in lung, intestine, and spleen. Spetex-1 expression in the rat testes was detected first at 3 weeks in postnatal development and continued to be detected up to adulthood. A search in the databases showed that the amino acid sequence of spetex-1 was 82% identical to that of its mouse homologue found in the databases. Both rat spetex-1 and the mouse homologue contained Ser-X (X = His, Arg, or Asn) repeats in the middle portion of the proteins. In situ hybridization revealed that spetex-1 mRNA was expressed in haploid spermatids of step 7-18 within the seminiferous epithelium. Immunohistochemical analysis with confocal laser-scanning microscopy demonstrated that spetex-1 protein was not expressed in spermatogonia, spermatocytes, and round spermatids in adult rat testis, but was specifically detected in the residual cytoplasm of elongate spermatids of step 15-18 as well as in residual bodies engulfed by Sertoli cells. We interpreted these data as a potential role of spetex-1 in spermatogenesis, especially in cell differentiation from late elongate spermatids to mature spermatozoa.  相似文献   

9.
10.
11.
Mammalian gametogenesis is regulated through complex interactions between germ and somatic cells. To investigate the mechanism underlying the differentiation of functional gametes, some genes specifically expressed during gametogenesis have been isolated and characterized. In a search for further examples of such genes, we have isolated from a newborn mouse testis cDNA library, a clone corresponding to mouse inhibin alpha-subunit. Although it is known that the inhibin alpha-subunit molecule is abundantly produced in ovarian follicle and in testicular Sertoli cells, the spatial and temporal patterns of expression of this gene remain to be elucidated. In this study, the patterns of expression of inhibin alpha-subunit mRNA during mouse gametogenesis were examined by RNA blot, cytoplasmic dot and in situ hybridization techniques. In the testis, the concentration of inhibin alpha-subunit mRNA increased from about 16 dpc (days post coitum), peaked at birth and then gradually decreased, paralleling testicular development. Inhibin alpha-subunit mRNA was localized in Sertoli cells of wild type as well as W/Wv testes. In adult testis, mRNA was restricted to the perinuclear cytoplasm of Sertoli cells. Inhibin alpha-subunit mRNA was expressed in follicle cells of adult ovary more abundantly than in adult testis. Analysis of expression during folliculogenesis showed that the accumulation of this mRNA began in preantrum follicles and the level of expression reached a maximum in Graafian follicles.  相似文献   

12.
13.
14.
DNAJB13 is a type II HSP40/DnaJ protein. Using a specific antibody raised against the recombinant DNAJB13 protein, we characterized DNAJB13 in mouse testes and epididymal spermatozoa. The expression of DNAJB13 protein in testis was undetectable until postnatal Week 4 revealed by Western blot analysis, whereas Dnajb13 mRNA was detectable as early as postnatal Week 1 by RT-PCR. Immunohistochemistry analyses showed that DNAJB13 was localized in the cytoplasm of spermatids from step 2 to 3 onward with the strongest expression in step 9-10, and in the spermatid flagella. In mature spermatozoa, DNAJB13 was present along the entire length of the sperm flagellum, but not in the SDS-resistant tail structures lacking the flagellar axoneme, strongly suggesting that DNAJB13 is an axoneme-associated component. In addition, we showed that the expression of Dnajb13 mRNA and DNAJB13 protein was unaltered after heat shock treatment, indicating that DNAJB13 was constitutively expressed in mouse testis. Taken together, the present study suggested that DNAJB13 might be involved in assembly and stability of axoneme during sperm flagellum development.  相似文献   

15.
16.
A strong signal of cDNA product was identified in adult and senile testes of the Japanese monkeys (Macaca fuscata) using differential display PCR analysis. Its full-length cDNA was molecular-cloned by RT-PCR using adult testis mRNA as templates. The predicted open reading frame encoded a protein of 242 amino-acid residues. It contained J domain in the NH(2) terminal region and Gly/Phe-rich domain in the middle of protein, which are typical structural domains of the DnaJ protein family. We named this gene, MFSJ1, for spermatogenic cell-specific DNAJ homolog in the Japanese monkey. Northern blot analysis of RNAs from various somatic and germinal tissues revealed that the MFSJ1 gene is specifically expressed in testis and is active at adult and senile stages but is scarcely expressed at the juvenile stage. In situ hybridization revealed that the MFSJ1 gene is expressed mainly in spermatids and the expressional potential is maintained from adult to senile stages. MFSJ1 was found to have high similarity (71% identity) with MSJ1, mouse spermatogenic cell-specific DnaJ homolog. Although this type of DnaJ-like protein has not been found in other mammals, it may be essential for mammalian spermatogenesis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号