首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose isomerase from Streptomyces phaeochromogenes was purified from a commerical preparation, Swetase, by DEAE-cellulose, Bio-Gel A-0.5 m, and hydroxyapatite column chromatographies. It was found to be 2 fractions; F-A, not adsorbed on hydroxyapatite and F-B, adsorbed on hydroxyapatite. They were homogeneous in ordinary and SDS-PAGE and had similarities in some enzymatic and physico-chemical properties. The differences, however, were found in the N-terminal amino acid, which was only serine for F-A while it was serine and alanine for F-B, and also in their peptide mapping patterns of digests with trypsin, Achromobacter protease I, and cyanogen bromide. The results suggest that glucose isomerase from S. phaeochromogenes was composed of the two kinds of isozymes and that each of isozymes was a tetramer constituted of non-identical subunits.  相似文献   

2.
In teleosts glucosephosphate isomerase exists as two tissue-specific isozymes. Most tissues contain the more acidic liver-type isozyme, while white muscle contains the more basic isozyme; and a few tissues contain both the liver- and muscle-type isozymes as well as a hybird. The isozymes were isolated from catfish liver and muscle and from conger muscle and shown to be homogeneous by polyacrylamide gel electrophoresis, isoelectric focusing, analytical ultracentrifugation, and rechromatography. Both isozymes are of molecular weight 132,000 (S020,w = 7.0 S) and composed of two subunits of Mr approximately 65,000. The muscle and liver isozymes were shown to have distinct isoelectric points (catfish liver = 6.2; muscle = 7.0) and amino acid compositions. Tryptic peptide maps, after S-carboxymethylation and carbamylation, revealed several distinct differences in the primary structures of the isozymes. Although the isozymes could also be distinguished on the basis of their stabilities, most of their basic catalytic properties were found to be similar. A conger was obtained which was heterozygous for the variant allele at the muscle-glucosephosphate isomerase locus. A comparison of the variant conger muscle isozyme with the wild type revealed a single altered peptide, suggesting a point mutation. The structure-function studies, as well as the genetic studies, clearly establish that the two types of isozymes are of independent genetic origin.  相似文献   

3.
4.
Inorganic polyphosphate has been expected to accelerate bone regeneration. However, there are limited evidences to prove that polyphosphate adsorbed on the surface of a hydroxyapatite plate enhances calcification of cultured osteoblasts. In this study, we examined the effect of polyphosphate adsorbed onto the surface of a hydroxyapatite plate on the attachment, proliferation, differentiation, and calcification of osteoblasts. After hydroxyapatite plates were soaked in solutions of polyphosphate, the plate surfaces were analyzed by scanning electron microscopy and toluidine blue staining to confirm adsorption of polyphosphate. The hydroxyapatite plates were further subjected to the measurements of surface roughness, water contact angle, and the binding capacity of calcium ions. Cell culture experiments were carried out using MC3T3-E1 pre-osteoblastic cells. It was found that soaking a hydroxyapatite plate in a polyphosphate solution gave rise to an increase in surface roughness and reduction in water contact angle in a concentration-dependent manner, suggesting the adsorption of polyphosphate onto the surface of a hydroxyapatite plate. It was further observed that surface-adsorbed polyphosphate exhibited an inhibitory effect on cell adhesion and proliferation. In contrast, cell differentiation was promoted on hydroxyapatite plates with adsorbed polyphosphate, when assessed from expression of differentiation marker genes including alkaline phosphatase, osteopontin, and osteocalcin. In addition, calcification of the culture was enhanced on hydroxyapatite plates with relatively low density of adsorbed polyphosphate. Our results as a whole provided an evidence to show that there is a narrow window with regard to the surface density of adsorbed polyphosphate for the enhancement of osteoblast calcification.  相似文献   

5.
Two major protein kinase C (PKC) isozymes, accounting for approximately 95% of the total activity in human neutrophils, were separated by hydroxyapatite chromatography and were identified as beta-PKC (60% of the total) and alpha-PKC (35% of the total). No gamma-PKC was detected. A minor Ca2+/phospholipid requiring kinase that eluted from hydroxyapatite after alpha-PKC did not react significantly with any of the specific antisera employed for identification. Modification of beta-PKC or the minor PKC isozyme by calpain yielded Ca2+/phospholipid-independent forms (PKM) that retained only 50% of the original activities. In contrast, PKM formed from alpha-PKC retained full catalytic activity. For each native isozyme the rate of conversion by calpain was accelerated in the presence of Ca2+ and the lipid effectors, and the PKM form generated in each case was resistant to further digestion by calpain. All three PKC isozymes were also modified by a neutral serine proteinase isolated from human neutrophils, with this proteinase the major effect being loss of kinase activity, via a transient production of a Ca2+/phospholipid-independent form. This neutral serine proteinase appears to be localized at sites of interaction of cytoskeletal proteins with the cell membrane. Following stimulation of intact neutrophils with phorbol 12-myristate 13-acetate complete loss of native cytosolic kinase activity was observed, with recovery of approximately 30% of the original activity as a cytosolic Ca+/phospholipid independent form, presumably PKM. Loss of native PKC activity was greatest for the beta-isozyme. In cells stimulated by fMet-Leu-Phe approximately 60% of the original PKC activity was recovered as native cytosolic PKC and 30% as cytosolic PKM. Inhibitors of calpain reduced the extent of down-regulation of PKC, increased the proportion of PKC that remained associated with the plasma membrane and significantly reduced the proteolytically generated fully active PKM. Taken together, the in vitro and in vivo results suggest that calpain is involved primarily in the conversion of the PKC isozymes to the irreversibly activated PKM forms, and that the neutral serine proteinase may be the enzyme responsible for down-regulation, possibly via PKM as an intermediate.  相似文献   

6.
Oriented immobilization of proteins is an important step in creating protein-based functional materials. In this study, a method was developed to orient proteins on hydroxyapatite (HA) surfaces, a widely used bone implant material, to improve protein bioactivity by employing enhanced green fluorescent protein (EGFP) and β-lactamase as model proteins. These proteins have a serine or threonine at their N-terminus that was oxidized with periodate to obtain a single aldehyde group at the same location, which can be used for the site-specific immobilization of the protein. The HA surface was modified with bifunctional hydrazine bisphosphonates (HBPs) of various length and lipophilicity. The number of functional groups on the HBP-modified HA surface, determined by a 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay, was found to be 2.8 × 10(-5) mol/mg of HA and unaffected by the length of HBPs. The oxidized proteins were immobilized on the HBP-modified HA surface in an oriented manner through formation of a hydrazone bond. The relative protein immobilization amounts through various HBPs were determined by fluorescence and bicinchoninic acid (BCA) assay and showed no significant effect by length and lipophilicity of HBPs. The relative amount of HBP-immobilized EGFP was found to be 10-15 fold that of adsorbed EGFP, whereas the relative amount of β-lactamase immobilized through HBPs (2, 3, 4, 6, and 7) was not significantly different than adsorbed β-lactamase. The enzymatic activity of HBP-immobilized β-lactamase was measured with cefazolin as substrate, and it was found that the catalytic efficiency of HBP-immobilized β-lactamase improved 2-5 fold over adsorbed β-lactamase. The results obtained demonstrate the feasibility of our oriented immobilization approach and showed an increased activity of the oriented proteins in comparison with adsorbed proteins on the same hydroxyapatite surface matrix.  相似文献   

7.
Purified phosphodiesterase-phosphomonoesterase was found to be composed of four isozymes with different isoelectric points. These isozymes, phosphodiesterase-phosphomonoesterases 1-4, were separated from one another by repeated isoelectric focusing. Very little difference in amino acid composition, enzymic properties or circular dichroism spectra was detected among the isozymes. Far-ultraviolet circular dichroism spectra showed that the enzyme contained about 10% alpha-helix and 40% beta-structure. Phosphodiesterase-phosphomonesterase is a glycoprotein, because it was adsorbed on concanavalin A-Sepharose 4B and gave a band of carbohydrate coincident with that of protein or enzymic activity on polyacrylamide disc gel electrophoresis. Carbohydrate analyses revealed that the enzyme contained 37 micron of N-acetylglucosamine and 358 micron of mannose per mg of protein. The carbohydrate contents of the four isozymes were almost the same.  相似文献   

8.
The glucosephosphate isomerase (D-glucose-6-phosphate Ketol-isomerase, EC 5.3.1.9) isozymes of Trypanosoma cruzi were characterized with respect to their native and subunit molecular size, isoelectric point and in vitro thermostability. The molecular weight data are consistent with a dimeric enzyme structure. The apparent native and subunit size homogeneity and differences in pI values imply that the electrophoretic mobility differences of isozymes in native gels are determined by their molecular charge. Minor differences in peptide maps indicate the existence of some heterogeneity in the primary structure of the isozymes. The stability of triple-banded glucosephosphate isomerase electrophoretic profiles was confirmed, supporting the view that these phenotypes represent non-interconvertible enzyme species.  相似文献   

9.
The development of isozymes of phosphogluco-isomerase (PGI; D-glucose-6-phosphate ketol isomerase EC 5.3.1.9.) in perennial ryegrasses was followed from dry seed through to leaf senescence using starch gel electrophoretic separations. Root isozymes were also examined. Two forms of the enzyme were found, one (PGI/2) being present in all tissues and at all stages of the life cycle. The other (PGI/1) had two zones of activity, one of which was detected only in light-exposed tissue. Normal development of this form could be inhibited by growing seedlings on distilled water. Some alleles of PGI/2 not previously reported for ryegrasses are also described.  相似文献   

10.
Glucose-6-phosphate isomerase exists as multiple, catalytically active isozymes which can be resolved by polyacrylamide gel electrophoresis, isoelectric focusing, and ion-exchange chromatography. GPI from bovine heart was purified to homogeneity and each of the isozymes resolved. Four of the five isozymes were characterized with regard to their physical, chemical, and catalytic properties in order to establish their possible physiological significance and to ascertain their molecular basis. The isozymes exhibited identical native (118,000) and subunit (59,000) molecular weights but had different apparent pI values of 7.2, 7.0, 6.8, and 6.6. Kinetic constants, such as turnover number, Km and Ki values, were identical for all isozymes in either reaction direction. Structural analyses showed that the amino termini were blocked and the carboxyl terminal sequences were -Glu-Ala-Ser-Gly for all four isozymes. The most basic isozyme was more stable than the more acidic isozymes at pH extremes, at high ionic strength, in the presence of denaturants, or upon exposure to proteases. When the most basic isozyme was incubated in vitro under mild alkaline conditions, there was a spontaneous generation of the more acidic isozymes with electrophoretic properties identical to those found in vivo. The simultaneous release of ammonia along with the spontaneous shift to more acidic isozymes indicates deamidation as the molecular basis for the formation of the acidic isozymes both in vivo and in vitro. The change in the peptide fragmentation patterns following cleavage by hydroxylamine further suggests that deamidation of specific Asn-Gly bonds accounts for the structural basis of the isozymes.  相似文献   

11.
The composition, molecular weight and in vitro antioxidant activity of various sulfated polysaccharides obtained by anion exchange chromatography, acid hydrolysis and radical process degradation of the crude sulfated polysaccharide extracted from Laminaria japonica were compared. The low sulfated F-A2, with a peak-molecular weight (Mp) of 5–15 kDa, 14.5% sulfated ester and 21.8% glucuronic acid, exhibited a very strong antioxidant activity on superoxide and hydroxyl radicals, with activity even higher than that of large molecular weight fractions F-A and F-B. However, highly sulfated fractions with a peak-molecular weight below 15 kDa had much lower antioxidant activities than other fractions. These results indicated that the sulfate group of the low molecular weight fractions represents a physical block for the reaction with oxygen radicals. The chemical properties and antioxidant activities of sulfated polysaccharide fractions obtained by radical process degradation of crude sulfated polysaccharide were quite different from those obtained by acid hydrolysates. By radical process degradation, the high molecular weight was decreased to give LM2 (Mp 8 kDa) and LM1 (Mp 1.5 kDa), with a yield of 40% and 15%, respectively. LM2 was enriched with fucose and sulfated ester, while containing low amounts of glucuronic acid. The antioxidant activity showed that LM2 was unable to scavenge either superoxide or hydroxyl radical, which suggested that radical process degradation targeted mainly ascopyllan-like species rich in glucuronic acid, while the fraction rich in sulfated l-fucose remained unchanged. However, LM1 with Mp 1.5 kDa still retained apparent scavenging ability for superoxide radical, although it contained no glucuronic acid and certain amounts of galactose and mannose as main neutral sugars. These result suggest that the antioxidant activity of sulfated polysaccharides is apparently related not only to molecular weight and sulfated ester content, as previously determined, but also to glucuronic acid and fucose content.  相似文献   

12.
The metabolism and mutagenic activity of 4-fluorobenzo[j]fluoranthene (4F-B[j]F) and 10-fluorobenzo[j]fluoranthene (10F-B[j]F) were evaluated and compared with benzo[j]fluoranthene (B[j]F) using an identical rat liver homogenate preparation. Previous studies have shown that the major genotoxic metabolites of B[j]F are the 4,5- and 9,10-dihydrodiol. The 9,10-dihydrodiol was the principal metabolite formed in the case of 4F-B[j]F, while the 4,5-dihydrodiol was the principal metabolite formed in the metabolism of 10F-B[j]F. Studies on the relative genotoxicity of these fluorinated derivatives were performed to indirectly determine the possible contribution of the 4,5- and 9,10-dihydrodiol in the activation of B[j]F to a genotoxic agent. In the presence of microsomal activation, both of these fluorinated derivatives of B[j]F were more mutagenic in S. typhimurium TA97a, TA98 and TA100 than B[j]F. However, differences in mutagenic potency were observed between 4F- and 10F-B[j]F. 10F-B[j]F had similar mutagenic potency to 4F-B[j]F in TA97a and TA98 at doses associated with the linear portion of the dose response curve. However, a slightly higher mutagenic response was observed with 10F-B[j]F in TA98 at doses above 5 nmol. In contrast, 4F-B[j]F was more active than 10F-B[j]F as a mutagen in TA100. The tumor-initiating activity of these analogs on mouse skin was assessed at doses of 2.0, 1.0 and 0.3 mumol. Skin irritation was observed with the fluorinated B[j]F derivatives at doses above 0.3 mumol. At a dose of 0.3 mumol, 4F-B[j]F exhibited tumorigenic activity which was similar to B[j]F. In contrast, 10F-B[j]F was less active than B[j]F at all three doses assayed. Both fluorinated derivatives of B[j]F formed higher levels of DNA adducts in vivo in mouse skin than B[j]F. A modified 32P-postlabeling method was required to detect fast migrating B[j]F:DNA adducts that went undetected in previous studies. The level of DNA adducts formed from 4F-B[j]F was considerably greater than the levels observed with 10F-B[j]F. This is consistent with the greater mutagenic activity in S. typhimurium TA100 and tumor-initiating activity exhibited by 4F-B[j]F. These studies suggest that fluorine substitution may significantly alter the intrinsic genotoxicity of the 4,5- and 9,10-dihydrodiol of B[j]F. These data also imply that B[j]F may be primarily activated via the formation of the 9,10-dihydrodiol metabolite. This pathway of activation is inconsistent with our previous studies which indicate that the 4,5-dihydrodiol is the most important pathway of activation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The fish, Fundulus heteroclitus (L.), like most advanced teleosts, possesses duplicate loci for the glycolytic enzyme, glucose-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9). The locus for the GPI-A2 (where GPI represents glucose-phosphate isomerase) isozyme is preferentially expressed in anaerobic tissues such as white skeletal muscle, while GPI-B2 predominates in aerobic tissues like liver and red muscle. We questioned whether this tissue specificity would be reflected in unique structural and functional characteristics of the respective isozymes. Consequently, an analysis of the two isozymes was undertaken. The enzymes were purified by a combination of ion-exchange chromatography and isoelectric focusing. Each isozyme was characterized as to native and subunit molecular weight, isoelectric pH, and susceptibility to thermal denaturation. Both were dimeric enzymes, with native molecular masses of 110 kDa. The isoelectric pH values for GPI-A2 and GPI-B2 were 7.9 and 6.4, respectively. Differences were apparent in thermal stability, i.e. GPI-A2 was more stable than GPI-B2. Kinetic properties were investigated as a function of both pH and temperature. The Km values for fructose 6-phosphate (Fru-6-P) differed between the isozymes at low pH, but no significant differences were observed at higher pH. The inhibition constant (Ki) for 6-phosphogluconate (6-P-gluconate) was pH dependent. GPI-A2 was slightly more sensitive to 6-P-gluconate inhibition than GPI-B2 between pH 7.0 and 8.5. The Km for Fru-6-P was temperature dependent for the GPI-B2 isozyme, but relatively temperature independent for GPI-A2 between 10 and 35 degrees C. The Ki for 6-P-gluconate was temperature dependent for both isozymes. The Ki values for GPI-A2 were consistently lower than those for GPI-B2. Energies of activation differed between the two isozymes by 4.4 kcal with GPI-A2 having the lower value. While delta G values were identical for the isozymes, their delta H and delta S values differed significantly. The structural and kinetic differences that exist between the glucose-phosphate isomerase isozymes appear to be tailored to the unique metabolic demands of the tissues in which these Gpi loci are expressed.  相似文献   

14.
Abstract The phosphoglycerate kinase ( pgk ), triosephosphate isomerase ( tpi ), and enolase ( eno ) genes from Thermotoga neapolitana have been cloned and expressed in Escherichia coli . In high copy number, the pgk gene complemented an E. coli pgk strain. In T. neapolitana , the pgk and tpi genes appear to be fused and eno is near those genes. Like T. maritima , T. neapolitana produces phosphoglycerate kinase as both an individual enzyme and a fusion protein with triosephosphate isomerase, and triosephosphate isomerase activity is not found without associated phosphoglycerate kinase activity. Unlike T. maritima , which forms only a 70-kDa fusion protein, T. neapolitana expresses both 73-kDa and 81-kDa isozymes of this fusion protein. These isozymes are present in both T. neapolitana cells and in E. coli cells expressing T. neapolitana genes.  相似文献   

15.
Isozymes in wheat-barley hybrid derivative lines   总被引:1,自引:0,他引:1  
Zymogram analysis was used to identify the barley chromosomes that carry the structural genes for particular isozymes. Wheat, barley, and wheatbarley hybrid derivative lines (which contained identified barley chromosomes) were tested by gel electrophoresis for isozymes of particular enzymes. It was found that barley chromosome 4 carries structural genes for acid phosphatase and amylase isozymes, barley chromosome 5 carries genes for phosphoglucose isomerase and malate dehydrogenase isozymes, and that barley chromosome 2 carries a gene for at least one glucose-6-phosphate dehydrogenase protomer. These results reinforce previous conclusions that barley chromosome 4 shows homoeology with wheat chromosome group 4 and that barley chromosome 5 shows homoeology with wheat chromosome group 1.  相似文献   

16.
Abstract A general correlation between neural expression and negative charge in isozymes suggests charge represents an adaptation to the neural environment. Interestingly, a notable exception exists in teleost fish. Two cytosolic malate dehydrogenase (MDH) isozymes have different spatial expression patterns in certain fishes: one is expressed in all tissues and the second is expressed primarily in the eye and skeletal muscle. While the neural MDH isozyme is negatively charged, the difference in charge between the two isozymes is not as pronounced as that observed in other gene families (e.g., triosephosphate isomerase and lactate dehydrogenase). Most tetrapods express a single cytosolic MDH isozyme, and it has been demonstrated recently that the pair of isozymes found in teleosts results from a gene duplication sometime after the separation of teleosts and tetrapods, although the exact timing of this duplication has not been inferred. Phylogenetic analyses suggest that the duplication of teleost isozymes occurred during the radiation of actinopterygian fish, consistent with the timing of duplication at other loci. Using inferred amino acid sequences, we examine the pattern of change following the duplication and across the rest of the MDH gene tree. Comparison between the MDH gene family and another gene family that shows a larger charge differential among members (triosephosphate isomerase) indicates that the smaller charge difference between MDH isozymes is best explained by greater constraint on amino acid change directly following the duplication, not greater constraint across the entire gene tree. This difference in constraint might result from the wider pattern of expression of the “neural” MDH isozyme.  相似文献   

17.
C Monder  A Marandici 《Steroids》1991,56(1):12-16
Corticosteroid side-chain (CSC) isomerase catalyzes ketol-aldol interconversion of the corticosteroid side chain. The enzyme was present in the blood of mouse, rat, guinea pig, chicken, pig, horse, sheep, cow, and human. The patterns of substrate specificity, measuring 3H-1H exchange of 21-tritiated forms of 11-deoxycorticosterone, corticosterone, and cortisol, were species specific. Based on enzyme activity and immunostaining of mouse blood fractions, red blood cells had the most isomerase activity, plasma had less, and white blood cells had low but highly variable levels of enzyme. Purified mouse liver CSC isomerase was found to be adsorbed by red blood cells. The results suggest that circulating CSC isomerase is derived in part from tissue sources and is in part an intrinsic blood enzyme.  相似文献   

18.
The levels of each of the glycolytic enzymes were observed to exhibit a parallel increase of 200 to 300% when human lymphocytes were stimulated to undergo blast transformation. A series of electrofocusing and electrophoretic studies was utilized to assess the isozyme distribution of the glycolytic enzymes during blastogenesis. Hexokinase (pI = 7.40), glucosephosphate isomerase (pI = 9.35), and enolase (pI = 8.30) existed as single electrophoretic components and were unchanged during blast transformation. Phosphoglycerate mutase was observed to exist as two isozymes (pI = 5.80 and 6.63), which were also unchanged by blastogenesis. Aldolase, which was present as two electrophoretic forms in lymphocytes (pI = 9.25 and 8.75), exhibited a shift in the relative content of each. In addition to the lactate dehydrogenase isozymes at pI 9.50 and 7.60 found in lymphocytes, lymphoblasts contained isozymes with pI values of 7.30, 7.05, and 5.85. Although glyceraldehyde 3-phosphate dehydrogenase was present as a single electrophoretic form (pI ? 8.0) in both lymphocytes and lymphoblasts, the association of the enzyme with actin produced electrophoretic artifacts with lower pI values. Phosphoglycerate kinase, which appeared as a single form in lymphocytes (pI = 9.00), was present as two isozymes (9.00 and 8.74) in lymphoblasts. Similarly, pyruvate kinase (pI = 8.73 and 8.50 in lymphocytes) exhibited additional isozymes (pyruvate kinase, pI = 7.60 and 5.85, and triosephosphate isomerase, pI = 5.20) as a result of cell transformation.  相似文献   

19.
Ion filtration chromatography on diethylaminoethyl-Sephadex A-25 has been used to separate two isozymes each of triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, glycerate 3-phosphate kinase, enolase, and phosphoglycerate mutase from homogenates of developing castor oil (Ricinus communis L. cv. Baker 296) seeds. Crude plastid fractions, prepared by differential centrifugation, were enriched in one of the isozymes, whereas the cytosolic fractions were enriched in the other. These data (and data published previously) indicate that plastids from developing castor oil seeds have a complete glycolytic pathway and are capable of conversion of hexose phosphate to pyruvate for fatty acid synthesis. The enzymes of this pathway in the plastids are isozymes of the corresponding enzymes located in the cytosol.  相似文献   

20.
The present study showed that S. mutans and S. sanguis behaved like negatively-charged particles in their interaction with hydroxyapatite in vitro. Phosphate in the system inhibited bacterial uptake by apatite, whereas calcium increased the uptake. A layer of acidic protein inhibited the uptake of bacteria by hydroxyapatite. The opposite was true when a basic protein was first adsorbed to the apatite. A saliva film on the apatite decreased the uptake of bacteria, supporting the view that acidic proteins are selectively adsorbed by hydroxyapatite from saliva. The results indicate clearly that electrostatic forces may be involved in bacterial interaction with tooth surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号