首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two related kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta, phosphorylate the IkappaB proteins, leading to their degradation and the subsequent activation of gene expression by NF-kappaB. IKKbeta has a much higher level of kinase activity for the IkappaB proteins than does IKKalpha and is more critical than IKKalpha in modulating tumor necrosis factor alpha activation of the NF-kappaB pathway. These results indicate an important role for IKKbeta in activating the NF-kappaB pathway but leave open the question of the role of IKKalpha in regulating this pathway. In the current study, we demonstrate that IKKalpha directly phosphorylates IKKbeta. Moreover, IKKalpha either directly or indirectly enhances IKKbeta kinase activity for IkappaBalpha. Finally, transfection studies to analyze NF-kappaB-directed gene expression suggest that IKKalpha is upstream of IKKbeta in activating the NF-kappaB pathway. These results indicate that IKKalpha, in addition to its previously described ability to phosphorylate IkappaBalpha, can increase the ability of IKKbeta to phosphorylate IkappaBalpha.  相似文献   

2.
The IkappaB kinase (IKK) complex includes the catalytic components IKKalpha and IKKbeta in addition to the scaffold protein IKKgamma/NEMO. Increases in the activity of the IKK complex result in the phosphorylation and subsequent degradation of IkappaB and the activation of the NF-kappaB pathway. Recent data indicate that the constitutive activation of the NF-kappaB pathway by the human T-cell lymphotrophic virus, type I, Tax protein leads to enhanced phosphorylation of IKKgamma/NEMO by IKKbeta. To address further the significance of IKKbeta-mediated phosphorylation of IKKgamma/NEMO, we determined the sites in IKKgamma/NEMO that were phosphorylated by IKKbeta, and we assayed whether IKKgamma/NEMO phosphorylation was involved in modulating IKKbeta activity. IKKgamma/NEMO is rapidly phosphorylated following treatment of cells with stimuli such as tumor necrosis factor-alpha and interleukin-1 that activate the NF-kappaB pathway. By using both in vitro and in vivo assays, IKKbeta was found to phosphorylate IKKgamma/NEMO predominantly in its carboxyl terminus on serine residue 369 in addition to sites in the central region of this protein. Surprisingly, mutation of these carboxyl-terminal serine residues increased the ability of IKKgamma/NEMO to stimulate IKKbeta kinase activity. These results indicate that the differential phosphorylation of IKKgamma/NEMO by IKKbeta and perhaps other kinases may be important in regulating IKK activity.  相似文献   

3.
The mechanistic relationship of phosphorylation of the C terminus of IKKbeta with phosphorylation of its T-loop kinase domain within the IKK complex remained unclear. We investigated the regulatory role of the serine cluster residing immediately adjacent to the HLH domain and of the serines in the NEMO/IKKgamma-binding domain (NBD/gammaBD) in the C-terminal portion of IKKbeta in MEFs deficient in IKKbeta and IKKalpha and in yeast reconstitution system. We show that phosphorylation events at the C terminus of IKKbeta can be divided into autophosphorylation of the serine cluster adjacent to the HLH domain and phosphorylation of the NBD/gammaBD. Autophosphorylation of the serine cluster occurs immediately after IKK activation and requires IKKgamma. In MEFs, this autophosphorylation does not have the down-regulatory function on the IKK complex that was previously described (1). On the other hand, phosphorylation of the NBD/gammaBD regulates IKKgamma-dependent phosphorylation of the T-loop activation domain in IKKbeta and, hence, IKK complex activation. Our study suggests that, within the IKK complex, modulation of the NBD/gammaBD by IKKgamma is upstream to the T-loop phosphorylation.  相似文献   

4.
Epithelial cells represent the first line of host innate defense against invading microbes by elaborating a range of molecules involved in pathogen clearance. In particular, epithelial mucins facilitate the mucociliary clearance by physically trapping inhaled microbes. Up-regulation of mucin production thus represents an important host innate defense response against invading microbes. How mucin is induced in upper respiratory Streptococcus pneumoniae infections is unknown. In this study, we show that pneumolysin is required for up-regulation of MUC5AC mucin via TLR4-dependent activation of ERK in human epithelial cells in vitro and in mice in vivo. Interestingly, a "second wave" of ERK activation appears to be important in mediating MUC5AC induction. Moreover, IkappaB kinase (IKK) alpha and IKKbeta are distinctly involved in MUC5AC induction via an ERK1-dependent, but IkappaBalpha-p65- and p100-p52-independent, mechanism, thereby revealing novel roles for IKKs in mediating up-regulation of MUC5AC mucin by S. pneumoniae.  相似文献   

5.
Canonical activation of NF-kappa B is mediated via phosphorylation of the inhibitory I kappa B proteins by the I kappa B kinase complex (IKK). IKK is composed of a heterodimer of the catalytic IKK alpha and IKK beta subunits and a presumed regulatory protein termed NEMO (NF-kappa B essential modulator) or IKK gamma. NEMO/IKK gamma is indispensable for activation of the IKKs in response to many signals, but its mechanism of action remains unclear. Here we identify TANK (TRAF family member-associated NF-kappa B activator) as a NEMO/IKK gamma-interacting protein via yeast two-hybrid analyses. This interaction is confirmed in mammalian cells, and the domains required are mapped. TANK was previously shown to assist NF-kappa B activation in a complex with TANK-binding kinase 1 (TBK1) or IKK epsilon, two kinases distantly related to IKK alpha/beta, but the underlying mechanisms remained unknown. Here we show that TBK1 and IKK epsilon synergize with TANK to promote interaction with the IKKs. The TANK binding domain within NEMO/IKK gamma is required for proper functioning of this IKK subunit. These results indicate that TANK can synergize with IKK epsilon or TBK1 to link them to IKK complexes, where the two kinases may modulate aspects of NF-kappa B activation.  相似文献   

6.
7.
8.
9.
The IkappaB kinase (IKK)-related kinase NAK (also known as TBK or T2K) contributes to the activation of NF-kappaB-dependent gene expression. Here we identify NAP1 (for NAK-associated protein 1), a protein that interacts with NAK and its relative IKK epsilon (also known as IKKi). NAP1 activates NAK and facilitates its oligomerization. Interestingly, the NAK-NAP1 complex itself effectively phosphorylated serine 536 of the p65/RelA subunit of NF-kappaB, and this activity was stimulated by tumor necrosis factor alpha (TNF-alpha). Overexpression of NAP1 specifically enhanced cytokine induction of an NF-kappaB-dependent, but not an AP-1-dependent, reporter. Depletion of NAP1 reduced NF-kappaB-dependent reporter gene expression and sensitized cells to TNF-alpha-induced apoptosis. These results define NAP1 as an activator of IKK-related kinases and suggest that the NAK-NAP1 complex may protect cells from TNF-alpha-induced apoptosis by promoting NF-kappaB activation.  相似文献   

10.
Selective degradation of the IκB kinase (IKK) by autophagy   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(11):855-856
Proteasome-mediated degradation and autophagy are the two major pathways mediating the turnover of cellular proteins. The proteasomal pathway is known to be a highly specific and regulated process mediating the degradation of short-lived proteins such as many important factors involved in cellular signaling. In contrast, it is generally thought that autophagy is rather nonselective as it is responsible for the bulk degradation of long-lived proteins and organelles. Challenging this general view, in this issue of Cell Research, Qing et al. report that selective degradation of the IκB kinase (IKK) triggered by the loss of Hsp90 function is mediated by autophagy [1].  相似文献   

11.
This study presents a molecular inhibitory mechanism by Fas-associated factor 1 (FAF1) on IkappaB kinase (IKK) activation, where divergent NF-kappaB-activating stimuli converge. FAF1 interacts with IKKbeta in response to proinflammatory stimuli (such as tumor necrosis factor-alpha, interleukin-1beta, and lipopolysaccharide) and suppresses IKK activation. Interaction of the leucine-zipper domain of IKKbeta with FAF1 affected the IKK heterocomplex (IKKalpha/beta) and homocomplex (IKKalpha/alpha, IKKbeta/beta) formations and attenuated IKKgamma recruitment to IKKbeta. Overexpression of FAF1 reduced the level of IKKbeta activity, whereas FAF1 depletion increased the activity. These results indicate that FAF1 inhibits IKK activation and its downstream signaling by interrupting the IKK complex assembly through physical interaction with IKKbeta. Taken together, FAF1 robustly suppresses NF-kappaB activation through the inhibition of IKK activation in combination with previously reported cytoplasmic retention of NF-kappaB p65 (Park, M. Y., Jang, H. D., Lee, S. Y., Lee, K. J., and Kim, E. (2004) J. Biol. Chem. 279, 2544-2549). Such redundant suppression would prevent inadvertent activation of the NF-kappaB pathway.  相似文献   

12.
The human T-cell leukemia virus type 1 Tax oncoprotein deregulates the NF-kappa B signaling pathway by persistently stimulating a key signal transducer, the I kappa B kinase (IKK). Tax physically associates with the IKK regulatory subunit, IKK gamma, although the underlying biochemical mechanism and functional significance remain unclear. We show that the Tax-IKK gamma interaction requires two homologous leucine zipper domains located within IKK gamma. These leucine zipper domains are unique for the presence of a conserved upstream region that is essential for Tax binding. Site-directed mutagenesis analysis revealed that a leucine-repeat region of Tax is important for IKK gamma binding. Interestingly, all the Tax mutants defective in IKK gamma binding failed to engage the IKK complex or stimulate IKK activity, and these functional defects can be rescued by fusing the Tax mutants to IKK gamma. These results provide mechanistic insights into how Tax specifically targets and functionally activates the cellular kinase IKK.  相似文献   

13.
14.
15.
The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation.   总被引:23,自引:0,他引:23  
  相似文献   

16.
17.
18.
19.
20.
Though the nicotinic acetylcholine receptor (nAChR) subunits alpha9 and alpha 10 have been thoroughly characterized within hair cells of the organ of Corti in the inner ear, prior studies have shown that they are also expressed in lymphocytes. In this report, we sought to more definitively characterize the nAChR subunits alpha9 and alpha10 within various populations of human lymphocytes. Using a combination of techniques, including RT-PCR, single-cell RT-PCR, Northern and western blot analysis, and immunofluorescence, expression of both alpha9 and alpha 10 was demonstrated in purified populations of T-cells (CD3+, CD4+, CD8+ and the Jurkat, MT2 and CEM T-cell lines) and B-cells (CD19+, CD80+ and EBV-immortalized B-cells). Single-lymphocyte recording techniques failed to identify an ionic current in response to applied acetylcholine in either T-cells or B-cells. These results clearly demonstrate the presence of these nicotinic receptor subunits within several populations of human lymphocytes, implicating their role in the immune response. However, a lack of demonstrated response to applied acetylcholine using standard single-cell recording techniques suggests a physiology different than that seen in hair cells of the inner ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号