首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanolic extracts from the cotyledons of mature dry Phaseolusvulgaris L. seed yielded cytokinin-like activity which co-chromatographedwith zeatin and ribosylzeatin. Under conditions which stimulatedgermination and cotyledon expansion, the level of these cytokininsdecreased rapidly in both intact embryos and excised cotyledons.In the excised cotyledons the decrease was continuous, resultingin very low levels of cytokinin being detected after 4 daysof incubation. With the embryonic axis present, however, theinitial decrease was arrested and reversed after 3 days. Thissuggests that the cotyledons do not synthesize cytokinins butthat these hormones are imported from the embryonic axis, particularlyonce radicle growth is well under way. Phaseolus vulgaris, bean, cotyledons, cytokinins, germination  相似文献   

2.
The influence of chronic ethanol ingestion on hepatic acyl-CoA: cholesterol acyltransferase activity was investigated to determine the relationship between alcohol intake and cholesterol ester accumulation. Rats were given nutritionally complete liquid diets supplemented with 6.3% ethanol or an isocaloric equivalent of dextrin-maltose for 5 weeks. During this period, the hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed male rats remained constant, whereas the same activity in pair-fed controls as well as chow-fed rats exhibited a 30% decrease in activity. Unlike alcohol-fed male rats, the hepatic acyl-CoA: cholesterol acyltransferase activity of female rats decreased by approximately 30% by the fifth week of ethanol ingestion. Despite the fact that the gender of the animals led to disparate levels of acyl-CoA: cholesterol acyltransferase activity in response to ethanol ingestion, similar levels of cholesteryl ester accumulation were observed. The altered levels of acyl-CoA: cholesterol acyltransferase activity caused no significant change in the cholesterol concentration, cholesterol/phospholipid ratio, phospholipid fatty acid composition, or the membrane fluidity of the hepatic microsomes. We conclude that the altered hepatic acyl-CoA: cholesterol acyltransferase activity of ethanol-fed female rats cannot be directly responsible for ethanol-induced accumulation of cholesteryl esters.  相似文献   

3.
The application of 8[14C]t-zeatin to the cotyledons of germinatingbean seeds demonstrated that cytokinins are not readily exportedfrom the cotyledons to the embryonic axis during the early stagesof this process. In the cotyledons the applied zeatin is metabolizedextensively to metabolites which are polar and which occur atRF 0·2–0·5 on paper chromatograms. Thesemetabolites are stable and are not readily exported from thecotyledons. In contrast the metabolites found at RF 0–0·2are more readily exported. When exported to the radicles andplumules a large proportion of the translocated metaboliteswere converted to compounds which on paper co-chromatographedwith zeatin. This seems to suggest that the embryonic axis hasthe capacity to synthesize cytokinins and that some of the metabolitesformed during its catabolism can also be used for its synthesis. Phaseolus vulgaris, bean, germination, cytokinins, transport, cotyledons  相似文献   

4.
During the early stages of germination and vegetative development,cotyledons of intact bean (Phaseolus vulgaris L.) seedlingsshowed active ABA catabolism causing a low endogenous ABA content.At the end of the substrate mobilizing phase, when the cotyledonsbecame senescent, a drastic increase of the endogenous ABA contentlinked with a decrease of the ABA catabolic activity was observed.This indicates that a close connection exists between senescenceand endogenous ABA content and metabolism in bean cotyledons. Removal of the apical growth region induced in the cotyledonsactivation of the ABA catabolism and the endogenous ABA concentrationdecreased below the detection limit (0.1 ng/g fr wt) at theonset of the outgrowth of the axillary buds. From then, apicaldominance was restored and the cotyledons returned to the senescentstate, which was correlated with a drastic increase of theirendogenous ABA content. 1 Bevoegd verklaard navorser N. F. W. O. 2 Wetenschappelijk medewerker F. K. F. O. (Received November 25, 1980; Accepted February 13, 1981)  相似文献   

5.
The effect of phospholipid fatty acyl composition on the activity of acylcoenzyme A:cholesterol acyltransferase was investigated in rat liver microsomes. Specific phosphatidylcholine replacements were produced by incubating the microsomes with liposomes and bovine liver phospholipid-exchange protein. Although the fatty acid composition of the microsomes was modified appreciably, there was no change in the microsomal phospholipid or cholesterol content. As compared to microsomes enriched for 2 h with dioleoylphosphatidylcholine, those enriched with dipalmitoylphosphatidylcholine exhibited 30-45% less acyl-CoA:cholesterol acyltransferase activity. Enrichment with 1-palmitoyl-2-linoleoylphosphatidylcholine increased acyl-CoA:cholesterol acyltransferase activity by 20%. By contrast, dilinoleoylphosphatidylcholine abolished microsomal acyl-CoA:cholesterol acyltransferase activity almost completely. Addition of cofactors that stimulated microsomal lipid peroxidation inhibited acyl-CoA:cholesterol acyltransferase activity by only 10%, however, and did not increase the inhibition produced by submaximal amounts of dilinoleoylphosphatidylcholine. Certain of the phosphatidylcholine replacements produced changes in palmitoyl-CoA hydrolase, NADPH-dependent lipid peroxidase, glucose-6-phosphatase and UDPglucuronyl transferase activities, but they did not closely correlate with the alterations in acyl-CoA:cholesterol acyltransferase activity. Electron spin resonance measurements with the 5-nitroxystearate probe indicated that microsomal lipid ordering was reduced to a roughly similar extent by dioleoyl- or by dilinoleoylphosphatidylcholine enrichment. Since these enrichments produce widely different effects on acyl-CoA:cholesterol acyltransferase activity, changes in bulk membrane lipid fluidity cannot be the only factor responsible for phospholipid fatty acid compositional effect on acyl-CoA:cholesterol acyltransferase. The present results are more consistent with a modulation resulting from either changes in the lipid microenvironment of acyl-CoA:cholesterol acyltransferase or a direct interaction between specific phosphatidylcholine fatty acyl groups and acyl-CoA:cholesterol acyltransferase.  相似文献   

6.
Penicillin stimulated the synthesis of pigments in the cotyledonsof intact embryos and excised cotyledons of mung bean (Phaseolusaureus L.) and enhanced benzyladenine-induced accumulation ofchloroplast pigments. The presence of the embryonic axis duringlight exposure proved to be beneficial for chlorophyll synthesisby the cotyledons whereas its presence in dark germination producedan adverse effect. The possible involvement of nucleic acidand protein synthesis in light-regulated chlorophyll formationis suggested. The stimulating effect on pigment synthesis providedby penicillin in this system seems to involve a maintenanceof nucleic acid and protein synthesis. Phaseolus aureus L., mung bean, pigment synthesis, cotyledons  相似文献   

7.
The acyl-CoA:cholesterol acyltransferase (ACAT) activity and lipid composition of hepatic microsomal membrane were investigated 6 weeks after both 50 and 75% distal-small-bowel resection (SBR). A significant decrease in hepatic cholesteryl ester levels was observed after SBR, with a significant increase in the cholesteryl ester content of the livers of 75% SBR compared with the 50% SBR. Hepatic total acylglycerols, free cholesterol and phospholipid levels were not modified after the surgical operation. Microsomal free cholesterol was increased after both 50 and 75% SBR. However, a decrease in both microsomal ACAT activity and cholesteryl ester levels were found in microsomes (microsomal fractions) of resected rats, both changes being higher after 75 than after 50% resection. The total phospholipid content of the microsomes did not change after the surgical operation. The microsomal phospholipid fatty acid composition indicated higher changes after 75 than after 50% SBR. These results demonstrated that, in resected animals: (1) the activity of the enzyme responsible for catalysing cholesterol esterification (ACAT) is decreased, and (2) hepatic microsomal free cholesterol does not appear to influence the activity of ACAT.  相似文献   

8.
Fluorescent peroxidized lipids are present in lipid extractsof microsomal membranes and cytosol from young and senescingbean (Phaseolus vulgaris) cotyledon tissue. In young tissue,the peroxidized membrane lipids are mainly phospholipids, whereasthose in the cytosol are primarily free fatty acids. With advancingsenescence, microsomal peroxidized lipids increase by 200% relativeto membrane protein and by 50% on a per cotyledon basis, andthe increase is mainly attributable to enhanced levels of peroxidizedfree fatty acids. Cytosolic peroxidized lipids expressed ona per cotyledon basis decline by 55% over the same period. Fractionationof the cytosol revealed that, for both young and senescing tissue,about 50% of the cytosolic fluorescent peroxidized lipids areassociated with non-sedimentable microvesicles, which are formedfrom membranes and enriched in phospholipid catabolites. Moreover,the decline in cytosolic peroxidized lipids with advancing senescencecorrelates with progressive impairment of the formation of thesenon-sedimentable microvesicles. Key words: Phaseolus vulgaris, senescence, lipid peroxidation, fluorescence  相似文献   

9.
Kinetin and the embryo axis acted similarly in bringing abouta promotion of amylase activity in cotyledons of Phaseolus vulgaris.No promotive effect of gibberellic acid or indole-3-acetic acidon amylase activity could be detected. It is suggested thatthe regulatory action of the embryo axis on starch degradationin the cotyledons of P. vulgaris is mediated by cytokinins. (Received May 4, 1970; )  相似文献   

10.
Four cytokinins have been separated from extracts of root nodulesof Phaseolus mungo by thin-layer chromatography. Their activitywas determined on the basis of their ability to induce betacyaninsynthesis in cotyledons of Amaranthus caudatus. Zeatin and itsriboside showed greater activity than N6 (2-(isopentenyl)) aminopurine and its riboside in the bioassay. Phaseolus mungo, mung bean, cytokinins, isopentenyl, amino-purine, zeatin, betacyanin synthesis, Amaranthus caudatus  相似文献   

11.
CoA-dependent transacylation activity in microsomes is known to catalyze the transfer of fatty acids between phospholipids and lysophospholipids in the presence of CoA without the generation of free fatty acids. We previously found a novel acyl-CoA synthetic pathway, ATP-independent acyl-CoA synthesis from phospholipids. We proposed that: 1) the ATP-independent acyl-CoA synthesis is due to the reverse reaction of acyl-CoA:lysophospholipid acyltransferases and 2) the reverse and forward reactions of acyltransferases can combine to form a CoA-dependent transacylation system. To test these proposals, we examined whether or not recombinant mouse acyl-CoA:1-acyl-sn-glycero-3-phosphate (lysophosphatidic acid, LPA) acyltransferase (LPAAT) could catalyze ATP-independent acyl-CoA synthetic activity and CoA-dependent transacylation activity. ATP-independent acyl-CoA synthesis was indeed found in the membrane fraction from Escherichia coli cells expressing mouse LPAAT, whereas negligible activity was observed in mock-transfected cells. Phosphatidic acid (PA), but not free fatty acids, served as an acyl donor for the reaction, and LPA was formed from PA in a CoA-dependent manner during acyl-CoA synthesis. These results indicate that the ATP-independent acyl-CoA synthesis was due to the reverse reaction of LPAAT. In addition, bacterial membranes containing LPAAT catalyzed CoA-dependent acylation of LPA; PA but not free fatty acid served as an acyl donor. These results indicate that the CoA-dependent transacylation of LPA consists of 1) acyl-CoA synthesis from PA through the reverse action of LPAAT and 2) the transfer of the fatty acyl moiety of the newly formed acyl-CoA to LPA through the forward reaction of LPAAT.  相似文献   

12.
Wide angle x-ray diffraction of chloroplast and microsomal membranes from primary leaves of Phaseolus vulgaris has revealed that for both types of membrane, portions of the lipid become crystalline as the tissue senesces. For young leaves the transition temperature is about 23 C for microsomes and below −30 C for chloroplast membranes, indicating that at physiological temperature the lipid is entirely liquid-crystalline. Between 2 and 3 weeks after planting the transition temperature rises to 38 C for microsomes, but for chloroplasts this increase to a point above physiological temperature does not occur until between 3 and 4 weeks. Thereafter the transition temperature continues to rise for both types of membrane with advancing senescence, although the rate of increase is greater for chloroplasts than for microsomes. The appearance at physiological temperature of gel phase lipid in the microsomes coincides temporally with the initiation of a decline in total protein in the tissue, and the incidence of crystallinity in chloroplasts coincides with loss of chlorophyll. This change in phase behavior cannot be attributed to an alteration in fatty acid composition, but for both membrane systems it correlates with an increase of about 4-fold in the sterol to phospholipid ratio.  相似文献   

13.
The ability of purified rat liver and heart fatty acid binding proteins to bind oleoyl-CoA and modulate acyl-CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart fatty acid binding protein was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver fatty acid binding protein has a single binding site acyl-CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl-CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver fatty acid binding protein stimulated acyl-CoA production, whereas that from heart did not stimulate production over control values. 14C-labeled fatty acid-fatty acid binding protein complexes were prepared, incubated with membranes, and acyl-CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl-CoA in the presence of liver fatty acid binding protein but in the presence of heart fatty acid binding protein, only 45% of the fatty acid was converted. Liver but not heart fatty acid binding protein bound the acyl-CoA formed and removed it from the membranes. The amount of product formed was not changed by additional membrane, enzyme cofactors, or incubation time. Additional liver fatty acid binding protein was the only factor found that stimulated product formation. Acyl-CoA hydrolase activity was also shown in the absence of ATP and CoA. These studies suggest that liver fatty acid binding protein can increase the amount of acyl-CoA by binding this ligand, thereby removing it from the membrane and possibly aiding transport within the cell.  相似文献   

14.
Fluorescent products of lipid peroxidation accumulate with age in microsomal membranes from senescing cotyledons of Phaseolus vulgaris. The temporal pattern of accumulation is closely correlated with a rise in the lipid phase transition temperature reflecting the formation of gel phase lipid. Increased levels of fluorescent peroxidation products are also detectable in total lipid extracts of senescent cotyledons. Lipoxygenase activity increases with advancing age by about 3-fold on a fresh weight basis and 4-fold on a dry weight basis indicating that the tissue acquires elevated levels of lipid hydroperoxides. As well, levels of glutathione and superoxide dismutase activity decline on a dry weight basis as the cotyledons age, rendering the tissue more susceptible to oxidative damage. Catalase activity rises initially and then declines during senescence, but peroxidase activity rises steeply. Thus, apart from this increase in peroxidase, which would scavenge H2O2 only if appropriate cosubstrates were available, the defense mechanisms for coping with activated oxygen species (O2, H2O2, OH) are less effective in the older tissue. The observations support the contention that formation of gel phase lipid in senescing membranes is attributable to lipid peroxidation and suggest that the reactions of lipid peroxidation are utilized by the cotyledons to mediate deteriorative changes accompanying the mobilization and transport of metabolites from the storage tissue to the developing embryo.  相似文献   

15.
E J Demant  P K Jensen 《FEBS letters》1983,155(2):197-200
NADH oxidation in Escherichia coli cytoplasmic membrane vesicles enriched in anionic phospholipids by de novo synthesis of lipid in the vesicles from acyl-CoA esters and sn-glycerol 3-phosphate has been studied. NADH-oxidase but not NADH-dehydrogenase activity was found to decrease during synthesis and accumulation of phospholipid in the vesicles. Density gradient fractionation showed that NADH-oxidase activity was reduced to approximately 30% in vesicles with a 3-6 fold increase in anionic phospholipid, whereas vesicles with a greater than 10-fold increase in phospholipid had virtually no NADH oxidase activity.  相似文献   

16.
1. The development of rat liver acyl-CoA:sn-glycerol-3-phosphate-O-acyl-transferase (EC 2.3.1.15) is characterized by an increase and decrease in activity during the neonatal period, followed by a second increase and decrease during the late weaning period. Kidney acyltransferase exhibits a similar peak in activity during the neonatal period before increasing to adult levels of activity during the late weaning period. 2. Nucleosidediphosphatase activity increases rapidly during the neonatal period and thereafter gradually rises to adult levels in both liver and kidney. The latency of the enzyme increases rapidly after birth and thereafter shows little change with age. The enzyme appears to be more latent in the liver than in the kidney at all ages studied. 3. NADPH-cytochrome c reductase of liver has a single steep maximum and minimum in activity during the neonatal period, before increasing again to adult levels during the late weaning period. The enzyme in kidney shows a similar developmental pattern but at much lower levels of specific activity. 4. sn-Glycerol-3-phosphate acyltransferase activity was significantly higher in rough than in smooth membranes throughout the neonatal period of rapid smooth membrane proliferation. This distribution of enzyme activity is unlike that reported by others in phenobarbital-induced smooth membrane proliferation and suggests a major role for rough membranes in phospholipid synthesis during the neonatal period. 5. The qualitative similarity in development in rough and smooth microsomal subfractions for each of these enzymes is in distinct contrast with results previously reported for glucose-6-phosphatase.  相似文献   

17.
The specific activity of the acyltransferases of smooth microsomes of rat liver rose threefold by 12 h after injection of phenobarbital, while the activity of the acyltransferases of the rough microsomes rose slightly to peak at 3–4 h, and subsequently fell. The latter rise was abolished by treatment of the animal with actinomycin D or puromycin, while that of the smooth microsomes was unaffected. Incorporation of [14C]glycerol into phospholipid of smooth microsomes was elevated 100% by phenobarbital, while that of the rough microsomes was elevated 15%, and this could be accounted for by exchange between the microsomal phospholipids. The phospholipid/protein ratio of the smooth microsomes rose 1.5 times 3–4 h after injection of phenobarbital, while that of the rough microsomes fell slightly. The specific activity of NADPH cytochrome c reductase and NADPH diaphorase rose first in the rough microsomes, and subsequently in the smooth microsomes at a time coinciding with the return of the phospholipid/protein ratio to the control level. The rise in phospholipid/protein ratio was unaffected by actinomycin D or puromycin. These results indicate that the proliferating smooth membranes are the site of phospholipid synthesis, and that the phospholipid/protein ratio of these membranes may change independently.  相似文献   

18.
Synthesis of long-chain fatty alcohols in preputial glands of mice is catalyzed by an NADPH-dependent acyl coenzyme A (CoA) reductase located in microsomal membranes; sensitivity to trypsin digestion indicates that the reductase is on the cytoplasmic side of the membrane. Results with pyrazole and phenobarbital demonstrate the reaction is not catalyzed by a nonspecific alcohol dehydrogenase or an aldehyde reductase. Acyl-CoA reductase activity is sensitive to sulfhydryl and serine reagent modification, is stimulated by bovine serum albumin, and produces an aldehyde intermediate. The activity is extremely detergent sensitive and cannot be restored even after removal of the detergents. Phospholipase C or asolectin treatment does not release the acyl-CoA reductase from microsomal membranes, but causes a significant decrease in the activity recovered in the membrane pellet. Glycerol does not solubilize the reductase activity, nor does 3.0 m NaCl; however, the combination of glycerol and 3.0 m NaCl did release about 50% of the acyl-CoA reductase from the microsomal pellet. Substrate concentration curves obtained in the presence or absence of bovine serum albumin show significant differences in enzyme activities. The reductase is sensitive to the concentration of palmitoyl-CoA and is progressively inhibited at levels beyond the critical micellar concentration of the substrate. The apparent Km for acyl-CoA reductase is 14 μm; however, the maximum velocity varies with the concentration of albumin used. Expression of enzyme activity in delipidated microsomes requires specific phospholipids, which suggests that in vivo regulation of acyl-CoA reductase activity could be achieved through modifications in membrane lipid composition.  相似文献   

19.
1. The acyl-CoA:cholesterol acyltransferase (ACAT) activity and lipid composition of intestinal microsomal membrane were investigated 6 weeks after both 50 and 75% distal small bowel resection (DSBR). 2. No changes in both microsomal ACAT activity and cholesteryl ester levels were found, while microsomal non-esterified cholesterol content was increased after the surgical operation. 3. The total phospholipid content of the microsomes did not change as a result of DSBR. 4. The microsomal phospholipid fatty acid composition showed a significant increase in saturated fatty acids together with no changes in both total monounsaturated and total polyunsaturated fatty acids after resection. 5. An increase in the levels of linoleic acid accompanied by a decrease in arachidonic acid was found in remnant intestine of resected rats.  相似文献   

20.
The activity of acyl-CoA: cholesterol acyltransferase in the liver-microsomal fraction was considerably reduced in chicks fed on diet containing unsaturated fat, whereas the activity of HMG-CoA reductase and NADPH cytochrome c reductase was not affected. The fatty acid composition of the microsomes was modified appreciably by this dietary condition and there was no change in the phospholipid or cholesterol levels. The addition of cholesterol to the fat supplemented diet resulted in a considerable increase in the microsomal cholesterol content. A decrease in HMG-CoA reductase and an increase ACAT activity was observed compared with the corresponding values from both the groups fed on a standard diet and a fat supplemented diet with no cholesterol. These results suggest that acyl-CoA: cholesterol acyltransferase is modulated by alteration in the fatty acid composition of the microsomal membrane, while the cholesterol content of the microsomes shows a close relationship with the HMG-CoA reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号