首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A. S. Kondrashov 《Genetics》1994,137(1):311-318
For reasons that remain unclear, even multicellular organisms usually originate from a single cell. Here I consider the balance between deleterious mutations and selection against them in a population with obligate vegetative reproduction, when every offspring is initiated by more than one cell of a parent. The mutation load depends on the genomic deleterious mutation rate U, strictness of selection, number of cells which initiate an offspring n, and the relatedness among the initial cells. The load grows with increasing U, n and strictness of selection, and declines when an offspring is initiated by more closely related cells. If Un >> 1, the load under obligate vegetative reproduction may be substantially higher than under sexual or asexual reproduction, which may account for its rarity. In nature obligate vegetative reproduction seems to be more common and long term in taxa whose cytological features ensure a relatively low load under it. The same model also describes the mutation load under two other modes of inheritance: (1) uniparental transmission of organelles and (2) reproduction by division of multinuclear cells, where each daughter cell receives many nuclei. The load declines substantially when the deleterious mutation rate per organelle genome gets lower or when the number of nuclei in a cell sometimes drops. This may explain the small sizes of organelle genomes in sexual lineages and the presence of karyonic cycles in asexual unicellular multinuclear eukaryotes.  相似文献   

2.
S. P. Otto  M. E. Orive 《Genetics》1995,141(3):1173-1187
Whether in sexual or asexual organisms, selection among cell lineages during development is an effective way of eliminating deleterious mutations. Using a mathematical analysis, we find that relatively small differences in cell replication rates during development can translate into large differences in the proportion of mutant cells within the adult, especially when development involves a large number of cell divisions. Consequently, intraorganismal selection can substantially reduce the deleterious mutation rate observed among offspring as well as the mutation load within a population, because cells rather than individuals provide the selective ``deaths' necessary to stem the tide of deleterious mutations. The reduction in mutation rate among offspring is more pronounced in organisms with plastic development than in those with structured development. It is also more pronounced in asexual organisms that produce multicellular rather than unicellular offspring. By effecting the mutation rate, intraorganismal selection may have broad evolutionary implications; as an example, we consider its influence on the evolution of ploidy levels, finding that cell-lineage selection is more effective in haploids and tends to favor their evolution.  相似文献   

3.
The advantages of segregation and the evolution of sex   总被引:4,自引:0,他引:4  
Otto SP 《Genetics》2003,164(3):1099-1118
In diploids, sexual reproduction promotes both the segregation of alleles at the same locus and the recombination of alleles at different loci. This article is the first to investigate the possibility that sex might have evolved and been maintained to promote segregation, using a model that incorporates both a general selection regime and modifier alleles that alter an individual's allocation to sexual vs. asexual reproduction. The fate of different modifier alleles was found to depend strongly on the strength of selection at fitness loci and on the presence of inbreeding among individuals undergoing sexual reproduction. When selection is weak and mating occurs randomly among sexually produced gametes, reductions in the occurrence of sex are favored, but the genome-wide strength of selection is extremely small. In contrast, when selection is weak and some inbreeding occurs among gametes, increased allocation to sexual reproduction is expected as long as deleterious mutations are partially recessive and/or beneficial mutations are partially dominant. Under strong selection, the conditions under which increased allocation to sex evolves are reversed. Because deleterious mutations are typically considered to be partially recessive and weakly selected and because most populations exhibit some degree of inbreeding, this model predicts that higher frequencies of sex would evolve and be maintained as a consequence of the effects of segregation. Even with low levels of inbreeding, selection is stronger on a modifier that promotes segregation than on a modifier that promotes recombination, suggesting that the benefits of segregation are more likely than the benefits of recombination to have driven the evolution of sexual reproduction in diploids.  相似文献   

4.
Maternal care and female-biased sex ratios are considered by many to be essential prerequisites for the evolution of eusocial behaviors among the hymenoptera. Using population genetic models, I investigate the evolution of genes that have positive maternal effects but negative, direct effects on offspring fitness. I find that, under many conditions, such genes evolve more easily in haplo-diploids than in diplo-diploids. In fact, the conditions are less restrictive than those of kin selection theory, which postulate genes with negative direct effects but positive sib-social effects. For example, the conditions permitting the evolution of maternal effect genes are not affected if females mate multiply, whereas multiple mating reduces the efficacy of kin selection by reducing genetic relatedness within colonies. Inbreeding also differentially facilitates evolution of maternal effect genes in haplo-diploids relative to diplo-diploids, although it does not differentially affect the evolution of sib-altruism genes. Furthermore, when the direct, deleterious pleiotropic effect is restricted to sons, a maternal effect gene can evolve when the beneficial maternal effect is less than half (with inbreeding, much less) of the deleterious effect on sons. For kin selection, however, the sib-social benefits must always exceed the direct costs because genetic relatedness is always less than or equal to 1.0. The results suggest that haplo-diploidy facilitates (1) the evolution of maternal care, and (2) the evolution of maternal effect genes with antagonistic pleiotropic effects on sons. The latter effect may help explain the tendency toward female-biased sex ratios in haplo-diploids, especially those with inbreeding. I conclude that haplo-diploidy not only facilitates the evolution of sister-sister altruism by kin selection but also facilitates the evolution of maternal care and female-biased sex ratios, two prerequisites for eusociality.  相似文献   

5.
J. R. Peck 《Genetics》1994,137(2):597-606
This study presents a mathematical model in which a single beneficial mutation arises in a very large population that is subject to frequent deleterious mutations. The results suggest that, if the population is sexual, then the deleterious mutations will have little effect on the ultimate fate of the beneficial mutation. However, if most offspring are produced asexually, then the probability that the beneficial mutation will be lost from the population may be greatly enhanced by the deleterious mutations. Thus, sexual populations may adapt much more quickly than populations where most reproduction is asexual. Some of the results were produced using computer simulation methods, and a technique was developed that allows treatment of arbitrarily large numbers of individuals in a reasonable amount of computer time. This technique may be of prove useful for the analysis of a wide variety of models, though there are some constraints on its applicability. For example, the technique requires that reproduction can be described by Poisson processes.  相似文献   

6.
If sex is naturally selected as a way to combat parasites, then sexual selection for disease resistance might increase the overall strength of selection for outcrossing. In the present study, we compared how two forms of mate choice affect the evolutionary stability of outcrossing in simultaneous hermaphrodites. In the first form, individuals preferred to mate with uninfected individuals (condition-dependent choice). In the second form, individuals preferred to mate with individuals that shared the least number of alleles in common at disease-resistance loci. The comparisons were made using individual-based computer simulations in which we varied parasite virulence, parasite transmission rate, and the rate of deleterious mutation at 500 viability loci. We found that alleles controlling both forms of mate choice spread when rare, but their effects on the evolutionary stability of sex were markedly different. Surprisingly, condition-dependent choice for uninfected mates had little effect on the evolutionary stability of sexual reproduction. In contrast, active choice for mates having different alleles at disease-resistance loci had a pronounced positive effect, especially under low rates of deleterious mutation. Based on these results, we suggest that mate choice that increases the genetic diversity of offspring can spread when rare in a randomly mating population, and, as an indirect consequence, increase the range of conditions under which sexual reproduction is evolutionarily stable.  相似文献   

7.
Summary In the present paper we distinguish between two aspects of sexual reproduction. Genetic recombination is a universal features of the sexual process. It is a primitive condition found in simple, single-celled organisms, as well as in higher plants and animals. Its function is primarily to repair genetic damage and eliminate deleterious mutations. Recombination also produces new variation, however, and this can provide the basis for adaptive evolutionary change in spatially and temporally variable environments.The other feature usually associated with sexual reproduction, differentiated male and female roles, is a derived condition, largely restricted to complex, diploid, multicellular organisms. The evolution of anisogamous gametes (small, mobile male gametes containing only genetic material, and large, relatively immobile female gametes containing both genetic material and resources for the developing offspring) not only established the fundamental basis for maleness and femaleness, it also led to an asymmetry between the sexes in the allocation of resources to mating and offspring. Whereas females allocate their resources primarily to offspring, the existence of many male gametes for each female one results in sexual selection on males to allocate their resources to traits that enhance success in competition for fertilizations. A consequence of this reproductive competition, higher variance in male than female reproductive success, results in more intense selection on males.The greater response of males to both stabilizing and directional selection constitutes an evolutionary advantage of males that partially compensates for the cost of producing them. The increased fitness contributed by sexual selection on males will complement the advantages of genetic recombination for DNA repair and elimination of deleterious mutations in any outcrossing breeding system in which males contribute only genetic material to their offspring. Higher plants and animals tend to maintain sexual reproduction in part because of the enhanced fitness of offspring resulting from sexual selection at the level of individual organisms, and in part because of the superiority of sexual populations in competition with asexual clones.  相似文献   

8.
Pedigree relatedness, not greenbeard genes, explains eusociality   总被引:1,自引:0,他引:1  
The evolution of eusociality, where some individuals altruistically forgo reproduction, poses a dilemma which can be solved by kin selection, i.e. by considering relatedness among cooperating individuals. Most often, such relatedness is caused by pedigree relationships between family members. However, an alternative explanation has recently emerged in an article by Wilson and Hölldobler (2005) . Wilson and Hölldobler see the ecological benefit of group living as the principal reason for sociality. In their scenario, individuals sharing the same altruistic allele (analogous to a greenbeard gene) preferentially interact with each other, regardless of pedigree relatedness. We argue that empirical evidence has the potential to answer the question of whether pedigree relatedness plays a role in the evolution of eusociality. We conclude that both phylogenetic studies and studies of intra-genomic conflict support the importance of pedigree relatedness in the evolution of eusociality.  相似文献   

9.
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.  相似文献   

10.
The prevalence of sexual reproduction in most animal species despite its considerable costs such as useless males, energy spent on mating, the cost of meiosis and genome dilution remains a puzzle in evolutionary theory. One prominent single factor attempt to solve this persistent puzzle is the claim that sexual reproduction is instrumental in eliminating deleterious alleles from the species genome by the mechanism of recombination. There are three major versions of the deleterious allele hypothesis: First, the mutational deterministic hypothesis (MDH), which rests on the assumption of negative epistasis, predicts that recombination will help to purge the species genome of deleterious alleles by breaking apart linkages between these alleles. The assumption is that the joint negative effects of linked deleterious alleles is sometimes greater than the effects of the alleles considered separately. Second, there is the hypothesis that sexual reproduction speeds up purifying (negative) selection, which purges the genome of deleterious alleles. Alleles that are less deleterious than the wild type are naturally selected. These alleles, attained via recombination, are sometimes ‘leaky’ mutations giving rise to reduced functionality of attendant proteins. This hypothesis does not necessarily rest on the assumption of negative epistasis, which some argue is relatively rare in nature (Kouyos, Silander and Bonhoeffer (2012)) and which arguably could be seen as a virtue of the purifying selection hypothesis vs. the MDH. Third, Muller's ratchet hypothesis predicts that recombination will help to prevent the buildup of deleterious mutations by the mechanism of recombination. In this study, we focus primarily on testing the purifying selection hypothesis. We performed an individual-based model computer simulation using the program EcoSim to test this hypothesis. The experimental runs for sexual reproduction, asexual reproduction and facultative reproduction involved introducing a deleterious allele into the genome, which exacts an intermediate-level energy penalty on individuals. It was found that whereas on average, deleteriousness consistently declined over 18,000 time-steps due to recombination in sexual reproduction, deleteriousness did not decline for asexual and facultative runs. These results corroborate the hypothesis that recombination due to sexual reproduction helps to eliminate deleterious alleles from the genome through the selection of reduced function mutations.  相似文献   

11.
It is generally accepted that from a theoretical perspective, haplodiploidy should facilitate the evolution of eusociality. However, the "haplodiploidy hypothesis" rests on theoretical arguments that were made before recent advances in our empirical understanding of sex allocation and the route by which eusociality evolved. Here we show that several possible promoters of the haplodiploidy effect would have been unimportant on the route to eusociality, because they involve traits that evolved only after eusociality had become established. We then focus on two biological mechanisms that could have played a role: split sex ratios as a result of either queen virginity or queen replacement. We find that these mechanisms can lead haplodiploidy to facilitating the evolution of helping but that their importance varies from appreciable to negligible, depending on the assumptions. Furthermore, under certain conditions, haplodiploidy can even inhibit the evolution of helping. In contrast, we find that the level of promiscuity has a strong and consistently negative influence on selection for helping. Consequently, from a relatedness perspective, monogamy is likely to have been a more important driver of eusociality than the haplodiploidy effect.  相似文献   

12.
In populations with males and females, sexual selection may often represent a major component of overall selection. Sexual selection could act to eliminate deleterious alleles in concert with other forms of selection, thereby improving the fitness of sexual populations. Alternatively, the divergent reproductive strategies of the sexes could promote the maintenance of sexually antagonistic variation, causing sexual populations to be less fit. The net impact of sexual selection on fitness is not well understood, due in part to limited data on the sex‐specific effects of spontaneous mutations on total fitness. Using a set of mutation accumulation lines of Drosophila melanogaster, we found that mutations were deleterious in both sexes and had larger effects on fitness in males than in females. This pattern is expected to reduce the mutation load of sexual females and promote the maintenance of sexual reproduction.  相似文献   

13.
All evidence currently available indicates that obligatory sterile eusocial castes only arose via the association of lifetime monogamous parents and offspring. This is consistent with Hamilton''s rule (brs > roc), but implies that relatedness cancels out of the equation because average relatedness to siblings (rs) and offspring (ro) are both predictably 0.5. This equality implies that any infinitesimally small benefit of helping at the maternal nest (b), relative to the cost in personal reproduction (c) that persists throughout the lifespan of entire cohorts of helpers suffices to establish permanent eusociality, so that group benefits can increase gradually during, but mostly after the transition. The monogamy window can be conceptualized as a singularity comparable with the single zygote commitment of gametes in eukaryotes. The increase of colony size in ants, bees, wasps and termites is thus analogous to the evolution of multicellularity. Focusing on lifetime monogamy as a universal precondition for the evolution of obligate eusociality simplifies the theory and may help to resolve controversies about levels of selection and targets of adaptation. The monogamy window underlines that cooperative breeding and eusociality are different domains of social evolution, characterized by different sectors of parameter space for Hamilton''s rule.  相似文献   

14.
Inactivation of expression of the paternal allele at two maternally silent imprinted loci has recently been reported to diminish the quality of care that female mice lavish on their offspring. This suggests that there can be disagreement between the maternally and paternally derived genomes of mothers over how much care for offspring is appropriate, with the paternally derived genome favoring greater care. The reason for such disagreement is not obvious because the maternally and paternally derived alleles at a locus have equal probabilities of being transmitted to each of the mother's ova and, therefore, would appear to have equal interests in a mother's offspring. However, if a female mates with a related male, her two alleles may have different probabilities of being present in the sperm that fertilize her ova. Natural selection can favor silencing of the maternally derived allele at a locus that enhances the quality of maternal care if the average patrilineal relatedness between a female and her mates decreases more rapidly than the average matrilineal relatedness. Just such an asymmetrical decrease in relatedness over time would be expected in a structured population in which patrilineal inbreeding is more common than matrilineal inbreeding.  相似文献   

15.
Abstract The evolutionary explanation of senescence proposes that selection against alleles with deleterious effects manifested only late in life is weak because most individuals die earlier for extrinsic reasons. This argument also applies to alleles whose deleterious effects are nongenetically transmitted from mother to progeny, that is, that affect the performance of progeny produced at late ages rather than of the aging individuals themselves. We studied the effect of maternal age on offspring viability (egg hatching success and larva-to-adult survival) in two sets of Drosophila melanogaster lines (HAM/LAM and YOUNG/OLD), originating from two long-term selection experiments. In each set, some lines (HAM and YOUNG, respectively) have been selected for early reproduction, whereas later reproduction was favored in their counterparts (LAM and OLD). In the HAM and LAM lines, both egg hatching success and larval viability declined with mother's age and did so with accelerating rates. The hatching success declined significantly faster with maternal age in HAM than in LAM lines, according to one of two statistical approaches used. Egg hatching success also declined with maternal age in YOUNG and OLD lines, with no difference between the selection regimes. However, the relationship between mother's age and offspring larva-to-adult viability differed significantly between these two selection regimes: a decline of larval viability with maternal age occurred in YOUNG lines but not in OLD lines. This suggests that the rate with which offspring viability declines with mother's age responded to selection for early versus late reproduction. We suggest broadening the evolutionary concept of senescence to include intrinsically caused declines in offspring quality with maternal age.  相似文献   

16.
Under a wide variety of dynamic environmental conditions, natural selection appears to favor reproductive investment in a sexually produced offspring, carrying only half of the mother’s genes, over the investment in an asexually produced offspring, genetically identical to her. It is maintained that the same environmental conditions must affect the evolutionary cost and benefit of an investment in the prolongation of one’s own life versus an investment in sexual reproduction, in favor of the latter. The effects of different environmental conditions on the division of resources among sexual reproduction, asexual reproduction and prolongation of life are studied.  相似文献   

17.
The effect of biparental inbreeding on the conditions governing the evolution of selfing is examined using recursions in mating-type frequencies. Sibmating in combination with random outcrossing influences two key determinants of the adaptive value of selfing: 1) the meiotic cost of biparental reproduction and 2) the level of inbreeding depression due to deleterious mutations. Biparental inbreeding serves to maintain biparental reproduction by increasing relatedness between parents and their biparentally derived offspring and introduces the possibility of an optimal mating system that incorporates both modes of reproduction. Biparental inbreeding serves to promote uniparental reproduction by reducing the relative inbreeding depression suffered by uniparental offspring. The net effect of these two antagonistic trends depends upon the extent to which mutational load accounts for differences in the numbers of the two types of offspring. A brief summary of the empirical literature suggests that: 1) biparental inbreeding may occur in populations exhibiting mixed mating systems; 2) while inbreeding depression represents an important factor, it does not account entirely for differences in offspring number between the two modes of reproduction.  相似文献   

18.
Sexual selection is a powerful and ubiquitous force in sexual populations. It has recently been argued that sexual selection can eliminate the twofold cost of sex even with low genomic mutation rates. By means of differential male mating success, deleterious mutations in males become more deleterious than in females, and it has been shown that sexual selection can drastically reduce the mutational load in a sexual population, with or without any form of epistasis. However, any mechanism that claims to maintain sexual reproduction must be able to prevent the fixation of an asexual mutant clone with a twofold fitness advantage. Here, I show that despite very strong sexual selection, the fixation of an asexual mutant cannot be prevented under reasonable genomic mutation rates. Sexual selection can have a strong effect on the average mutational load in a sexual population, but as it cannot prevent the fixation of an asexual mutant, it is unlikely to play a key role on the maintenance of sexual reproduction.  相似文献   

19.
The evolution of sterile worker castes in eusocial insects was a major problem in evolutionary theory until Hamilton developed a method called inclusive fitness. He used it to show that sterile castes could evolve via kin selection, in which a gene for altruistic sterility is favored when the altruism sufficiently benefits relatives carrying the gene. Inclusive fitness theory is well supported empirically and has been applied to many other areas, but a recent paper argued that the general method of inclusive fitness was wrong and advocated an alternative population genetic method. The claim of these authors was bolstered by a new model of the evolution of eusociality with novel conclusions that appeared to overturn some major results from inclusive fitness. Here we report an expanded examination of this kind of model for the evolution of eusociality and show that all three of its apparently novel conclusions are essentially false. Contrary to their claims, genetic relatedness is important and causal, workers are agents that can evolve to be in conflict with the queen, and eusociality is not so difficult to evolve. The misleading conclusions all resulted not from incorrect math but from overgeneralizing from narrow assumptions or parameter values. For example, all of their models implicitly assumed high relatedness, but modifying the model to allow lower relatedness shows that relatedness is essential and causal in the evolution of eusociality. Their modeling strategy, properly applied, actually confirms major insights of inclusive fitness studies of kin selection. This broad agreement of different models shows that social evolution theory, rather than being in turmoil, is supported by multiple theoretical approaches. It also suggests that extensive prior work using inclusive fitness, from microbial interactions to human evolution, should be considered robust unless shown otherwise.  相似文献   

20.
Prevalence of sexual reproduction is still enigma. The main character of sex is alleles mixing that could be advantageous either in unstable environment (in this case sex provides high temp of evolution) or in unstable genotype (in this case sex provides purge of genome from deleterious mutations). As long as not all species inhabit highly changeable environments, variation of genotypes is more important factor. As the majority of new mutations is deleterious, effective mechanism of genome purging is needed. Maintenance of "purging mechanism" may be a single role of sex. Two promising mutational hypotheses--clade selection (Muller's ratchet and Nunney's hypothesis) and mutational deterministic hypothesis of Kondrashov claim that more effective elimination of slightly-deleterious mutations provides main advantage to sexual population in comparison with asexual. Despite prima facie similarity, these hypotheses differ in mechanisms, work at different temporal scales and have different consequences. Kondrashov's hypothesis reveals short-term advantage of sexual reproduction, and thus, based on the individual selection. Clade selection displays long-term advantage of sexual reproduction that could be realized only by group selection. The role of mobile elements in evolution of sexual reproduction is also discussed. Firstly, mobile elements ("sexual molecular parasites") can complicate the problem: having been domesticated in asexual genomes and remaining active in sexual genomes they lead to higher mutational rate in sexual organisms and so violate assumption critical for both mutational hypotheses of "other things being equal". Secondly, mobile elements could be leader factor of origin of sex (hypothesis proposed by Hickey). Because theory of group selection could explain maintenance of sex, but not its origin, mobile elements could induce the origin of sex but were not able to maintain it, so the next scenario of evolution of sex is proposed: mobile elements induced origin of sex, which was established later by group selection because provided long term benefit (Muller's ratchet and Nunney's hypothesis). So, on all stages of evolution, sex was not advantageous for the organism per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号