首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dc electrical conductivity of large single crystals of hen egg-white lysozyme has been measured. The samples were grown from aqueous solution and dried in air with silica gel. The temperature dependence of the conductivity obeyed the relation σ = σ0 exp(? ΔE/kT), with ΔE = 1.2 eV. The ΔE value agreed with most of the previous results for various proteins in the form of lyophilized powder. On the other hand, log σ0, being between 7 and 11, was much larger than the previously reported values and differed among the samples. An irreversible decrease in σ0, without affecting ΔE, was observed on heating the samples above 85°C. It was shown that the set of results can be explained if the charge carriers responsible for the observed conduction are regarded as protons, originating from residual water molecules. Photoresponse of the samples to uv radiation below 305–315 nm was also observed. Reproducible and reliable results were obtained relatively easily in the present experiments, which is thought to be the main advantage of using single-crystalline samples.  相似文献   

2.
A method for immobilizing protein crystals has been devised for determining face growth rates, and used to investigate the growth kinetics of hen egg white lysozyme crystals. Growth rates were determined at 22 degrees C in 0.1 M sodium acetate, 5% NaCl, pH 4.0, on the visually identified (110) face of tetragonal lysozyme crystals. Protein concentrations ranged from 13 to 57 mg/ml (saturation concentration = 1.7 mg/ml). Growth rate data were fit to the equation R = kappa sigma ri, where R = rate in cm/s; kappa = constant; sigma i = solute growth interface supersaturation; and r = rate dependence upon super-saturation, with the result that kappa = 0.146 X 10(-8) cm/s and r = 2.0. A model of the growth process was developed and the experimental data were used to determine the relative roles of transport and interfacial kinetics in the growth of this crystal. Values for the width of the boundary layer delta, the interfacial concentration Ci, and growth rate R were determined. The model may be used to extrapolate to other growth conditions. The relative role of transport and interfacial kinetics can be expressed by the coefficient gamma = (CB - Ci)/(CB - Cs), when CB is the bulk concentration and Cs the saturation. Values for gamma were found to range from much less than 0.1 for submicron-size crystals to approximately 0.15 for cm sizes. The results indicate that attachment or surface effects are rate-limiting in lysozyme crystal growth in Earth's gravity because solutal convection always provides more transport of solute than can be accommodated by the interface. In order to grow such crystals under transport limiting conditions, it would be necessary to suppress this solutal convection.  相似文献   

3.
A seeding method has been developed for growing large single crystals of globular proteins once small, preliminary specimens have been obtained. A small, carefully washed, crystal is used to seed a protein solution. After growth has stopped, the crystal is removed and inserted into a fresh protein solution, which allows it to grow further. This process can be repeated until the crystal has reached the desired dimensions. In several instances isomorphous heavy-atom derivatives could be obtained by including heavy-atom reagents in the seeded protein solution. This seeding technique is shown to work reproducibly with several proteins and under different conditions, suggesting that it might be generally applicable.  相似文献   

4.
5.
Permeability of lysozyme tetragonal crystals to water   总被引:1,自引:0,他引:1  
Diffusion of water within cross-linked tetragonal crystals of hen egg-white lysozyme has been measured and simulated on a computer using the X-ray structure of water-filled channels within the crystal lattice. Relative to the self-diffusion coefficient of bulk water molecules, the experimental diffusion coefficient of water within the crystal was found to be 13 times reduced in the (001) crystallographic plane and 5 times reduced in the [001] direction. Comparison of the experimental and computer simulated diffusion coefficients shows that steric limitations for water diffusion are mostly responsible for this reduction of the water diffusion in the crystal, with the self-diffusion coefficient of intracrystalline water reduced by no more than 30–40% as compared to that of bulk water.  相似文献   

6.
Single, three-dimensional crystals of the 50 S ribosomal subunit from Bacillus stearothermophilus (strain NCA) have been characterized using a synchrotron X-ray source. The crystals are orthorhombic with unit cell dimensions: a = 350 A, b = 670 A, c = 905 A, and contain at least one 2-fold screw axis. With cooling to -2 degrees C, the large crystals (1.0 mm X 0.2 mm X 0.1 mm) diffract to 15 to 18 A resolution and are stable in the synchrotron beam for several hours. Despite the large cell dimensions, the reflections are readily resolved when the X-ray diffraction patterns are densitometered with a 25 microns faster.  相似文献   

7.
Average growth rates of the (0 1 0) and (0 1 0) faces (R<0 1 0>) of monoclinic lysozyme crystals were measured in situ under 0.1 and 100 MPa. From the dependence of the growth rates on the lysozyme concentration, we determined the solubility of the crystal as a function of temperature at 0.1 and 100 MPa. The solubility increased with an increase in pressure. From the comparison between the growth rates under 0.1 and 100 MPa at the same supersaturation level, we found that the growth rates of the monoclinic lysozyme crystals kinetically increase with an increase in pressure. Supersaturation dependencies of the growth rates under 0.1 and 100 MPa were well fitted with a two-dimensional (2D) nucleation growth model of a birth-and-spread type. The fitting results suggest that the increase in the growth rates with pressure can be explained by the decrease in the average ledge surface energy of 2D island, the average distance between the kinks on a step and the activation energies in the incorporation processes of solute molecules.  相似文献   

8.
Diffuse scattering data have been collected on two crystal forms of lysozyme, tetragonal and triclinic, using synchrotron radiation. The observed diffraction patterns were simulated using an exact theory for simple model crystals which relates the diffuse scattering intensity distribution to the amplitudes and correlations of atomic movements. Although the mean square displacements in the tetragonal form are twice that in the triclinic crystal, the predominant component of atomic movement in both crystals is accounted for by short-range coupled motions where displacement correlations decay exponentially as a function of atomic separation, with a relaxation distance of approximately 6 A. Lattice coupled movements with a correlation distance approximately 50 A account for only about 5-10% of the total atomic mean square displacements in the protein crystals. The results contradict various presumptions that the disorder in protein crystals can be modeled predominantly by elastic vibrations or rigid body movements.  相似文献   

9.
Nuclear magnetic relaxation measurements are reported as a function of field strength corresponding to the frequency range from 0.01 to 20 MHz for water protons in monoclinic lysozyme crystals at 278 and 298 K. Though the instrumentation used selects only a portion of the total magnetization to sample, the data clearly indicate a field dependence of the relaxation rate that signals the presence of slow motions characterized by time constants in the range of tenths of microseconds and slower. The data support, but do not uniquely prove, the hypothesis that this time scale is that appropriate to the isotropic averaging of locally anisotropic water molecule motion at the protein surface.  相似文献   

10.
While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. To further examine the issue of purity in macromolecule crystallization, this study investigates the effect of the protein impurities, avidin, ovalbumin, and conalbumin at concentrations up to 50%, on the solubility, crystal face growth rates, and crystal purity of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the ?110? and ?101? lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.  相似文献   

11.
Abstract

The bonds between lysozyme molecules and precipitant ions in single crystals grown with chlorides of several metals are analysed on the basis of crystal structure data. Crystals of tetragonal hen egg lysozyme (HEWL) were grown with chlorides of several alkali and transition metals (LiCl, NaCl, KCl, NiCl2 and CuCl2) as precipitants and the three-dimensional structures were determined at 1.35?Å resolution by X-ray diffraction method. The positions of metal and chloride ions attached to the protein were located, divided into three groups and analysed. Some of them, in accordance with the recently proposed and experimentally confirmed crystal growth model, provide connections in protein dimers and octamers that are precursor clusters in the crystallization lysozyme solution. The first group, including Cu+2, Ni+2 and Na+1 cations, binds specifically to the protein molecule. The second group consists of metal and chloride ions bound inside the dimers and octamers. The third group of ions can participate in connections between the octamers that are suggested as building units during the crystal growth. The arrangement of chloride and metal ions associated with lysozyme molecule at all stages of the crystallization solution formation and crystal growth is discussed.

Communicated by Ramaswamy H. Sarma  相似文献   

12.
Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.  相似文献   

13.
A technique for the measurement of the dynamic Young's modulus E and logarithmic decrement ?? of protein crystals and other microscopic samples by the resonance method modified to a microscale is described. Monoclinic crystals of horse hemoglobin and sperm whale myoglobin; triclinic hen egg white lysozyme crystals, crosslinked by glutaraldehyde; and native and crosslinked needlelike lysozyme crystals were studied, as were amorphous protein films. The E of wet protein crystals is shown to be in the range (3–15) × 103 kg/cm2, ?? = 0.3–0.7. The crosslinking does not significantly affect the values. General elastic properties were analyzed for triclinic lysozyme crystals. No frequency dependence of E and ?? was found over the frequency range of 2.5–65 kHz. The temperature dependence was found to be characteristic for glassy polymers; the decrement of Young's modulus was ?2.4 ± 0.1%/°C. The guanidine HCl denaturation caused a 1000-fold decrease of E, its temperature dependence becoming similar to that of rubberlike materials. Studies of pH and salt effects showed E to be influenced by ionization of the acidic groups at pH 3–4.5. A humidity decrease from 100 to 30% caused a three- to fourfold increase of E and a decrease of ??. The final values of E = (40–60) × 103 kg/cm2 and ?? ? 0.1 were the same for dry crystals and amorphous films, whether crosslinked or not. These values may be attributed to the protein globular material.  相似文献   

14.
15.
Preparation of single crystals of transferrin   总被引:3,自引:0,他引:3  
  相似文献   

16.
BackgroundRecently, it has been revealed that tetragonal lysozyme crystals show a phase transition at 307 K upon heating. The underlying mechanisms of the phase transition are still not fully understood. Here we focus on the study of high-frequency vibrational modes arising from the protein and their temperature evolution in the vicinity of Tph as well as on the detailed study of crystalline water dynamics near Tph.MethodsRaman experiments have been performed at temperatures 295–323 K including Tph. The low-frequency modes and the modes of fingerprint region, CH- and OH-stretching regions have been analyzed.Results and conclusionsIn spite of the absence of noticeable rearrangements in protein structure, the high-frequency vibrational modes of lysozyme located in the fingerprint region have been found to exhibit the features of critical dynamics near Tph. Pronounced changes in the dynamics of α-helixes and Tyr residues exposed on the protein surface point to the important role of H-bond rearrangements at the phase transition. Additionally the study of temperature evolution of OH-stretching modes has shown an increase in distortions of tertahedral H-bond network of crystalline water above Tph. These changes in water dynamics could play a crucial role in the mechanisms of the phase transition.General significanceThe present results shed light on the mechanisms of the phase transition in lysozyme crystals.  相似文献   

17.
Quasilongitudinal sound velocities and the second-order elastic moduli of tetragonal hen egg-white lysozyme crystals were determined as a function of relative humidity (RH) by Brillouin scattering. In hydrated crystals the measured sound velocities in the [110] plane vary between 2.12 +/- 0.03 km/s along the [001] direction and 2.31 +/- 0.08 km/s along the [110] direction. Dehydration from 98% to 67% RH increases the sound velocities and decreases the velocity anisotropy in (110) from 8.2% to 2.0%. A discontinuity in velocity and an inversion of the anisotropy is observed with increasing dehydration providing support for the existence of a structural transition below 88% RH. Brillouin linewidths can be described by a mechanical model in which the phonon is coupled to a relaxation mode of hydration water with a single relaxation time of 55 +/- 5 ps. At equilibrium hydration (98% RH) the longitudinal moduli C(11) + C(12) + 2C(66) = 12.81 +/- 0.08 GPa, C(11) = 5.49 +/- 0.03 GPa, and C(33) = 5.48 +/- 0.05 GPa were directly determined. Inversion of the measured sound velocities in the [110] plane constrains the combination C(44) + (1/2)C(13) to 2.99 +/- 0.05 GPa. Further constraints on the elastic tensor are obtained by combining the Brillouin quasilongitudinal results with axial compressibilities determined from high-pressure x-ray diffraction. We constrain the adiabatic bulk modulus to the range 2.7-5.3 GPa.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号