首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
For regression with covariates missing not at random where the missingness depends on the missing covariate values, complete-case (CC) analysis leads to consistent estimation when the missingness is independent of the response given all covariates, but it may not have the desired level of efficiency. We propose a general empirical likelihood framework to improve estimation efficiency over the CC analysis. We expand on methods in Bartlett et al. (2014, Biostatistics 15 , 719–730) and Xie and Zhang (2017, Int J Biostat 13 , 1–20) that improve efficiency by modeling the missingness probability conditional on the response and fully observed covariates by allowing the possibility of modeling other data distribution-related quantities. We also give guidelines on what quantities to model and demonstrate that our proposal has the potential to yield smaller biases than existing methods when the missingness probability model is incorrect. Simulation studies are presented, as well as an application to data collected from the US National Health and Nutrition Examination Survey.  相似文献   

2.
Ibrahim JG  Chen MH  Lipsitz SR 《Biometrics》1999,55(2):591-596
We propose a method for estimating parameters for general parametric regression models with an arbitrary number of missing covariates. We allow any pattern of missing data and assume that the missing data mechanism is ignorable throughout. When the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM algorithm by the method of weights proposed in Ibrahim (1990, Journal of the American Statistical Association 85, 765-769). We extend this method to continuous or mixed categorical and continuous covariates, and for arbitrary parametric regression models, by adapting a Monte Carlo version of the EM algorithm as discussed by Wei and Tanner (1990, Journal of the American Statistical Association 85, 699-704). In addition, we discuss the Gibbs sampler for sampling from the conditional distribution of the missing covariates given the observed data and show that the appropriate complete conditionals are log-concave. The log-concavity property of the conditional distributions will facilitate a straightforward implementation of the Gibbs sampler via the adaptive rejection algorithm of Gilks and Wild (1992, Applied Statistics 41, 337-348). We assume the model for the response given the covariates is an arbitrary parametric regression model, such as a generalized linear model, a parametric survival model, or a nonlinear model. We model the marginal distribution of the covariates as a product of one-dimensional conditional distributions. This allows us a great deal of flexibility in modeling the distribution of the covariates and reduces the number of nuisance parameters that are introduced in the E-step. We present examples involving both simulated and real data.  相似文献   

3.
We consider longitudinal studies in which the outcome observed over time is binary and the covariates of interest are categorical. With no missing responses or covariates, one specifies a multinomial model for the responses given the covariates and uses maximum likelihood to estimate the parameters. Unfortunately, incomplete data in the responses and covariates are a common occurrence in longitudinal studies. Here we assume the missing data are missing at random (Rubin, 1976, Biometrika 63, 581-592). Since all of the missing data (responses and covariates) are categorical, a useful technique for obtaining maximum likelihood parameter estimates is the EM algorithm by the method of weights proposed in Ibrahim (1990, Journal of the American Statistical Association 85, 765-769). In using the EM algorithm with missing responses and covariates, one specifies the joint distribution of the responses and covariates. Here we consider the parameters of the covariate distribution as a nuisance. In data sets where the percentage of missing data is high, the estimates of the nuisance parameters can lead to highly unstable estimates of the parameters of interest. We propose a conditional model for the covariate distribution that has several modeling advantages for the EM algorithm and provides a reduction in the number of nuisance parameters, thus providing more stable estimates in finite samples.  相似文献   

4.
Horton NJ  Laird NM 《Biometrics》2001,57(1):34-42
This article presents a new method for maximum likelihood estimation of logistic regression models with incomplete covariate data where auxiliary information is available. This auxiliary information is extraneous to the regression model of interest but predictive of the covariate with missing data. Ibrahim (1990, Journal of the American Statistical Association 85, 765-769) provides a general method for estimating generalized linear regression models with missing covariates using the EM algorithm that is easily implemented when there is no auxiliary data. Vach (1997, Statistics in Medicine 16, 57-72) describes how the method can be extended when the outcome and auxiliary data are conditionally independent given the covariates in the model. The method allows the incorporation of auxiliary data without making the conditional independence assumption. We suggest tests of conditional independence and compare the performance of several estimators in an example concerning mental health service utilization in children. Using an artificial dataset, we compare the performance of several estimators when auxiliary data are available.  相似文献   

5.
Wang CY  Huang WT 《Biometrics》2000,56(1):98-105
We consider estimation in logistic regression where some covariate variables may be missing at random. Satten and Kupper (1993, Journal of the American Statistical Association 88, 200-208) proposed estimating odds ratio parameters using methods based on the probability of exposure. By approximating a partial likelihood, we extend their idea and propose a method that estimates the cumulant-generating function of the missing covariate given observed covariates and surrogates in the controls. Our proposed method first estimates some lower order cumulants of the conditional distribution of the unobserved data and then solves a resulting estimating equation for the logistic regression parameter. A simple version of the proposed method is to replace a missing covariate by the summation of its conditional mean and conditional variance given observed data in the controls. We note that one important property of the proposed method is that, when the validation is only on controls, a class of inverse selection probability weighted semiparametric estimators cannot be applied because selection probabilities on cases are zeroes. The proposed estimator performs well unless the relative risk parameters are large, even though it is technically inconsistent. Small-sample simulations are conducted. We illustrate the method by an example of real data analysis.  相似文献   

6.
Multiple imputation (MI) is increasingly popular for handling multivariate missing data. Two general approaches are available in standard computer packages: MI based on the posterior distribution of incomplete variables under a multivariate (joint) model, and fully conditional specification (FCS), which imputes missing values using univariate conditional distributions for each incomplete variable given all the others, cycling iteratively through the univariate imputation models. In the context of longitudinal or clustered data, it is not clear whether these approaches result in consistent estimates of regression coefficient and variance component parameters when the analysis model of interest is a linear mixed effects model (LMM) that includes both random intercepts and slopes with either covariates or both covariates and outcome contain missing information. In the current paper, we compared the performance of seven different MI methods for handling missing values in longitudinal and clustered data in the context of fitting LMMs with both random intercepts and slopes. We study the theoretical compatibility between specific imputation models fitted under each of these approaches and the LMM, and also conduct simulation studies in both the longitudinal and clustered data settings. Simulations were motivated by analyses of the association between body mass index (BMI) and quality of life (QoL) in the Longitudinal Study of Australian Children (LSAC). Our findings showed that the relative performance of MI methods vary according to whether the incomplete covariate has fixed or random effects and whether there is missingnesss in the outcome variable. We showed that compatible imputation and analysis models resulted in consistent estimation of both regression parameters and variance components via simulation. We illustrate our findings with the analysis of LSAC data.  相似文献   

7.
We consider the estimation of a nonparametric smooth function of some event time in a semiparametric mixed effects model from repeatedly measured data when the event time is subject to right censoring. The within-subject correlation is captured by both cross-sectional and time-dependent random effects, where the latter is modeled by a nonhomogeneous Ornstein–Uhlenbeck stochastic process. When the censoring probability depends on other variables in the model, which often happens in practice, the event time data are not missing completely at random. Hence, the complete case analysis by eliminating all the censored observations may yield biased estimates of the regression parameters including the smooth function of the event time, and is less efficient. To remedy, we derive the likelihood function for the observed data by modeling the event time distribution given other covariates. We propose a two-stage pseudo-likelihood approach for the estimation of model parameters by first plugging an estimator of the conditional event time distribution into the likelihood and then maximizing the resulting pseudo-likelihood function. Empirical evaluation shows that the proposed method yields negligible biases while significantly reduces the estimation variability. This research is motivated by the project of hormone profile estimation around age at the final menstrual period for the cohort of women in the Michigan Bone Health and Metabolism Study.  相似文献   

8.
Stubbendick AL  Ibrahim JG 《Biometrics》2003,59(4):1140-1150
This article analyzes quality of life (QOL) data from an Eastern Cooperative Oncology Group (ECOG) melanoma trial that compared treatment with ganglioside vaccination to treatment with high-dose interferon. The analysis of this data set is challenging due to several difficulties, namely, nonignorable missing longitudinal responses and baseline covariates. Hence, we propose a selection model for estimating parameters in the normal random effects model with nonignorable missing responses and covariates. Parameters are estimated via maximum likelihood using the Gibbs sampler and a Monte Carlo expectation maximization (EM) algorithm. Standard errors are calculated using the bootstrap. The method allows for nonmonotone patterns of missing data in both the response variable and the covariates. We model the missing data mechanism and the missing covariate distribution via a sequence of one-dimensional conditional distributions, allowing the missing covariates to be either categorical or continuous, as well as time-varying. We apply the proposed approach to the ECOG quality-of-life data and conduct a small simulation study evaluating the performance of the maximum likelihood estimates. Our results indicate that a patient treated with the vaccine has a higher QOL score on average at a given time point than a patient treated with high-dose interferon.  相似文献   

9.
Shin Y  Raudenbush SW 《Biometrics》2007,63(4):1262-1268
The development of model-based methods for incomplete data has been a seminal contribution to statistical practice. Under the assumption of ignorable missingness, one estimates the joint distribution of the complete data for thetainTheta from the incomplete or observed data y(obs). Many interesting models involve one-to-one transformations of theta. For example, with y(i) approximately N(mu, Sigma) for i= 1, ... , n and theta= (mu, Sigma), an ordinary least squares (OLS) regression model is a one-to-one transformation of theta. Inferences based on such a transformation are equivalent to inferences based on OLS using data multiply imputed from f(y(mis) | y(obs), theta) for missing y(mis). Thus, identification of theta from y(obs) is equivalent to identification of the regression model. In this article, we consider a model for two-level data with continuous outcomes where the observations within each cluster are dependent. The parameters of the hierarchical linear model (HLM) of interest, however, lie in a subspace of Theta in general. This identification of the joint distribution overidentifies the HLM. We show how to characterize the joint distribution so that its parameters are a one-to-one transformation of the parameters of the HLM. This leads to efficient estimation of the HLM from incomplete data using either the transformation method or the method of multiple imputation. The approach allows outcomes and covariates to be missing at either of the two levels, and the HLM of interest can involve the regression of any subset of variables on a disjoint subset of variables conceived as covariates.  相似文献   

10.
Roy J  Lin X 《Biometrics》2005,61(3):837-846
We consider estimation in generalized linear mixed models (GLMM) for longitudinal data with informative dropouts. At the time a unit drops out, time-varying covariates are often unobserved in addition to the missing outcome. However, existing informative dropout models typically require covariates to be completely observed. This assumption is not realistic in the presence of time-varying covariates. In this article, we first study the asymptotic bias that would result from applying existing methods, where missing time-varying covariates are handled using naive approaches, which include: (1) using only baseline values; (2) carrying forward the last observation; and (3) assuming the missing data are ignorable. Our asymptotic bias analysis shows that these naive approaches yield inconsistent estimators of model parameters. We next propose a selection/transition model that allows covariates to be missing in addition to the outcome variable at the time of dropout. The EM algorithm is used for inference in the proposed model. Data from a longitudinal study of human immunodeficiency virus (HIV)-infected women are used to illustrate the methodology.  相似文献   

11.
Satten GA  Carroll RJ 《Biometrics》2000,56(2):384-388
We consider methods for analyzing categorical regression models when some covariates (Z) are completely observed but other covariates (X) are missing for some subjects. When data on X are missing at random (i.e., when the probability that X is observed does not depend on the value of X itself), we present a likelihood approach for the observed data that allows the same nuisance parameters to be eliminated in a conditional analysis as when data are complete. An example of a matched case-control study is used to demonstrate our approach.  相似文献   

12.
We introduce a method of parameter estimation for a random effects cure rate model. We also propose a methodology that allows us to account for nonignorable missing covariates in this class of models. The proposed method corrects for possible bias introduced by complete case analysis when missing data are not missing completely at random and is motivated by data from a pair of melanoma studies conducted by the Eastern Cooperative Oncology Group in which clustering by cohort or time of study entry was suspected. In addition, these models allow estimation of cure rates, which is desirable when we do not wish to assume that all subjects remain at risk of death or relapse from disease after sufficient follow-up. We develop an EM algorithm for the model and provide an efficient Gibbs sampling scheme for carrying out the E-step of the algorithm.  相似文献   

13.
We focus on the problem of generalizing a causal effect estimated on a randomized controlled trial (RCT) to a target population described by a set of covariates from observational data. Available methods such as inverse propensity sampling weighting are not designed to handle missing values, which are however common in both data sources. In addition to coupling the assumptions for causal effect identifiability and for the missing values mechanism and to defining appropriate estimation strategies, one difficulty is to consider the specific structure of the data with two sources and treatment and outcome only available in the RCT. We propose three multiple imputation strategies to handle missing values when generalizing treatment effects, each handling the multisource structure of the problem differently (separate imputation, joint imputation with fixed effect, joint imputation ignoring source information). As an alternative to multiple imputation, we also propose a direct estimation approach that treats incomplete covariates as semidiscrete variables. The multiple imputation strategies and the latter alternative rely on different sets of assumptions concerning the impact of missing values on identifiability. We discuss these assumptions and assess the methods through an extensive simulation study. This work is motivated by the analysis of a large registry of over 20,000 major trauma patients and an RCT studying the effect of tranexamic acid administration on mortality in major trauma patients admitted to intensive care units. The analysis illustrates how the missing values handling can impact the conclusion about the effect generalized from the RCT to the target population.  相似文献   

14.
Rodenberg C  Zhou XH 《Biometrics》2000,56(4):1256-1262
A receiver operating characteristic (ROC) curve is commonly used to measure the accuracy of a medical test. It is a plot of the true positive fraction (sensitivity) against the false positive fraction (1-specificity) for increasingly stringent positivity criterion. Bias can occur in estimation of an ROC curve if only some of the tested patients are selected for disease verification and if analysis is restricted only to the verified cases. This bias is known as verification bias. In this paper, we address the problem of correcting for verification bias in estimation of an ROC curve when the verification process and efficacy of the diagnostic test depend on covariates. Our method applies the EM algorithm to ordinal regression models to derive ML estimates for ROC curves as a function of covariates, adjusted for covariates affecting the likelihood of being verified. Asymptotic variance estimates are obtained using the observed information matrix of the observed data. These estimates are derived under the missing-at-random assumption, which means that selection for disease verification depends only on the observed data, i.e., the test result and the observed covariates. We also address the issues of model selection and model checking. Finally, we illustrate the proposed method on data from a two-phase study of dementia disorders, where selection for verification depends on the screening test result and age.  相似文献   

15.
Chen B  Zhou XH 《Biometrics》2011,67(3):830-842
Longitudinal studies often feature incomplete response and covariate data. Likelihood-based methods such as the expectation-maximization algorithm give consistent estimators for model parameters when data are missing at random (MAR) provided that the response model and the missing covariate model are correctly specified; however, we do not need to specify the missing data mechanism. An alternative method is the weighted estimating equation, which gives consistent estimators if the missing data and response models are correctly specified; however, we do not need to specify the distribution of the covariates that have missing values. In this article, we develop a doubly robust estimation method for longitudinal data with missing response and missing covariate when data are MAR. This method is appealing in that it can provide consistent estimators if either the missing data model or the missing covariate model is correctly specified. Simulation studies demonstrate that this method performs well in a variety of situations.  相似文献   

16.
Summary Time varying, individual covariates are problematic in experiments with marked animals because the covariate can typically only be observed when each animal is captured. We examine three methods to incorporate time varying, individual covariates of the survival probabilities into the analysis of data from mark‐recapture‐recovery experiments: deterministic imputation, a Bayesian imputation approach based on modeling the joint distribution of the covariate and the capture history, and a conditional approach considering only the events for which the associated covariate data are completely observed (the trinomial model). After describing the three methods, we compare results from their application to the analysis of the effect of body mass on the survival of Soay sheep (Ovis aries) on the Isle of Hirta, Scotland. Simulations based on these results are then used to make further comparisons. We conclude that both the trinomial model and Bayesian imputation method perform best in different situations. If the capture and recovery probabilities are all high, then the trinomial model produces precise, unbiased estimators that do not depend on any assumptions regarding the distribution of the covariate. In contrast, the Bayesian imputation method performs substantially better when capture and recovery probabilities are low, provided that the specified model of the covariate is a good approximation to the true data‐generating mechanism.  相似文献   

17.
Meta-regression is widely used in systematic reviews to investigate sources of heterogeneity and the association of study-level covariates with treatment effectiveness. Existing meta-regression approaches are successful in adjusting for baseline covariates, which include real study-level covariates (e.g., publication year) that are invariant within a study and aggregated baseline covariates (e.g., mean age) that differ for each participant but are measured before randomization within a study. However, these methods have several limitations in adjusting for post-randomization variables. Although post-randomization variables share a handful of similarities with baseline covariates, they differ in several aspects. First, baseline covariates can be aggregated at the study level presumably because they are assumed to be balanced by the randomization, while post-randomization variables are not balanced across arms within a study and are commonly aggregated at the arm level. Second, post-randomization variables may interact dynamically with the primary outcome. Third, unlike baseline covariates, post-randomization variables are themselves often important outcomes under investigation. In light of these differences, we propose a Bayesian joint meta-regression approach adjusting for post-randomization variables. The proposed method simultaneously estimates the treatment effect on the primary outcome and on the post-randomization variables. It takes into consideration both between- and within-study variability in post-randomization variables. Studies with missing data in either the primary outcome or the post-randomization variables are included in the joint model to improve estimation. Our method is evaluated by simulations and a real meta-analysis of major depression disorder treatments.  相似文献   

18.
Zhang N  Little RJ 《Biometrics》2012,68(3):933-942
Summary We consider the linear regression of outcome Y on regressors W and Z with some values of W missing, when our main interest is the effect of Z on Y, controlling for W. Three common approaches to regression with missing covariates are (i) complete‐case analysis (CC), which discards the incomplete cases, and (ii) ignorable likelihood methods, which base inference on the likelihood based on the observed data, assuming the missing data are missing at random ( Rubin, 1976b ), and (iii) nonignorable modeling, which posits a joint distribution of the variables and missing data indicators. Another simple practical approach that has not received much theoretical attention is to drop the regressor variables containing missing values from the regression modeling (DV, for drop variables). DV does not lead to bias when either (i) the regression coefficient of W is zero or (ii) W and Z are uncorrelated. We propose a pseudo‐Bayesian approach for regression with missing covariates that compromises between the CC and DV estimates, exploiting information in the incomplete cases when the data support DV assumptions. We illustrate favorable properties of the method by simulation, and apply the proposed method to a liver cancer study. Extension of the method to more than one missing covariate is also discussed.  相似文献   

19.
Liang Li  Bo Hu  Tom Greene 《Biometrics》2009,65(3):737-745
Summary .  In many longitudinal clinical studies, the level and progression rate of repeatedly measured biomarkers on each subject quantify the severity of the disease and that subject's susceptibility to progression of the disease. It is of scientific and clinical interest to relate such quantities to a later time-to-event clinical endpoint such as patient survival. This is usually done with a shared parameter model. In such models, the longitudinal biomarker data and the survival outcome of each subject are assumed to be conditionally independent given subject-level severity or susceptibility (also called frailty in statistical terms). In this article, we study the case where the conditional distribution of longitudinal data is modeled by a linear mixed-effect model, and the conditional distribution of the survival data is given by a Cox proportional hazard model. We allow unknown regression coefficients and time-dependent covariates in both models. The proposed estimators are maximizers of an exact correction to the joint log likelihood with the frailties eliminated as nuisance parameters, an idea that originated from correction of covariate measurement error in measurement error models. The corrected joint log likelihood is shown to be asymptotically concave and leads to consistent and asymptotically normal estimators. Unlike most published methods for joint modeling, the proposed estimation procedure does not rely on distributional assumptions of the frailties. The proposed method was studied in simulations and applied to a data set from the Hemodialysis Study.  相似文献   

20.
We are interested in the estimation of average treatment effects based on right-censored data of an observational study. We focus on causal inference of differences between t-year absolute event risks in a situation with competing risks. We derive doubly robust estimation equations and implement estimators for the nuisance parameters based on working regression models for the outcome, censoring, and treatment distribution conditional on auxiliary baseline covariates. We use the functional delta method to show that these estimators are regular asymptotically linear estimators and estimate their variances based on estimates of their influence functions. In empirical studies, we assess the robustness of the estimators and the coverage of confidence intervals. The methods are further illustrated using data from a Danish registry study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号