首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiology studies have shown that consumption of fruits and vegetables is associated with the prevention of chronic diseases such as cancer and cardiovascular disease. Induction of cellular phase II detoxifying enzymes is associated with cancer preventive potential. Phenolsulfotransferases (PSTs) are traditionally known as phase II drug-metabolizing or detoxifying enzymes that facilitate the removal of drugs and other xenobiotic compounds. Phenolic acids are known to increase the activities of PSTs. In the present study, human HepG2 cells were used as model to investigate the influence of twenty vegetables on human PST activity and to evaluate the relationships to their antioxidant activity and total phenolics content. The result showed that PST-P activity was significantly (p < 0.01) induced by asparagus, broccoli, cauliflower, celery and eggplant, whereas PST-M activity was induced by asparagus, broccoli, carrot, eggplant and potato at a concentration of 100 microg/ml. The vegetable extracts that induced both forms of PSTs activities were found to have higher antioxidant capacities and total phenolic content in the oxygen radical absorbance capacity (ORAC) and Folin-Ciocalteu assay. The major polyphenols in broccoli, the most potential inducer in both forms of PSTs activities, was antioxidant phenolic acids. HPLC retention times and standard spiked indicated the presence of gallic acid, p-hydroxybenzoic acid, p-coumaric acid, gentisic acid and ferulic acid in broccoli. The overall effect of vegetables tested on the activity of PST-P was well correlated to their ORAC value and total phenolics content (r= 0.82, p < 0.05 and r = 0.78, p < 0.05). These results imply that vegetables have a capability of inducing PST activity, and the PST induction may be possibly ascribed to antioxidant phenolic acids in vegetable extracts.  相似文献   

2.
An increase in oxidative stress is suggested to be intimately involved in the pathogenesis of heart failure. Phenolic acids are widespread in plant foods; they contain important biological and pharmacological properties. This study evaluated the role of phenolic acids on the expression of antioxidant enzymes in the heart of male Sprague-Dawley rats. Gallic acid, ferulic acid and p-coumaric acid at a dosage of 100 mg kg(-1) body weight significantly increased the activities of cardiac superoxide dismutase, glutathione peroxidase (GPx) and catalase (CAT) as compared with control rats (P<.05). The changes in cardiac CuZnSOD, GPx and CAT mRNA levels induced by phenolic acids were similar to those noted in the enzyme activity levels. A significant (P<.05) increase in the GSH/GSSG ratio was observed in the heart of phenolic acid-treated rats. The heart homogenates obtained from rats that were administered phenolic acids displayed significant (P<.05) increases in capacity for oxygen radical absorbance compared with control rats. Immunoblot analysis revealed the increased cardiac total level of Nrf2 in phenolic acid-treated rats. Interestingly, phenolic acid-mediated antioxidant enzyme expression was accompanied by up-regulation of heme oxygenase-1. This study demonstrates that antioxidant enzymes in rat cardiac tissue can be significantly induced by phenolic acids following oral administration.  相似文献   

3.
Aldose reductase (AR) inhibitors have vital importance in the treatment and prevention of diabetic complications. In this study, rat kidney AR was purified 19.34-fold with a yield of 3.49% and a specific activity of 0.88?U/mg using DE-52 Cellulose anion exchange chromatography, gel filtration chromatography and 2′5′ ADP Sepharose-4B affinity chromatography, respectively. After purification, the in vitro inhibition effects of some phenolic acids (tannic acid, chlorogenic acid, sinapic acid, protocatechuic acid, 4-hydroxybenzoic acid, p-coumaric acid, ferulic acid, vanillic acid, syringic acid, α-resorcylic acid, 3-hydroxybenzoic acid and gallic acid) were investigated on purified enzyme. We determined IC50, Ki values and inhibition types of these phenolic acids. As a result, tannic and chlorogenic acid had a strong inhibition effect. On the other hand, gallic acid had a weak inhibition effect. In this study, all phenolic acids except for chlorogenic acid and p-coumaric acid showed non-competitive inhibition effects on rat kidney AR.  相似文献   

4.
采用氧自由基清除能力(ORAC)方法考察20种多酚类化合物的抗氧化活性。结果表明,该方法具有较优的线性关系(R2=0.997);检测限(LOD)和定量限(LOQ)为0.5~3.1 μmol·L-1,精密度<18%,准确度91%~105%。比较20种多酚类化合物抗氧化活性,对羟基苯甲酸类化合物中,鞣花酸和没食子酸具有较强的抗氧化活性;对羟基肉桂酸类以咖啡酸及其衍生物抗氧化活性最高;在类黄酮组分中,黄烷-3-醇表现出优良的抗氧化特性,黄酮醇次之。ORAC可作为评价多酚类化合物抗氧化的简便、高效的标准化检测方法。  相似文献   

5.
One conjugative pathway for the inactivation of endogenous and exogenous hydroxylated aromatic compounds is catalyzed by phenol (aryl) sulfotransferases (PSTs), which esterify phenolic acceptors with sulfate. The tracheobronchial epithelium is commonly exposed to phenolic drugs and pollutants, and metabolic sulfation and PST activity in this tissue have been previously demonstrated. To determine what factors may control PST expression, extracts of serum-free, growth factor-supplemented cultures of bovine bronchial epithelial cells were assayed for PST activity and PST antigen. The most significant finding was dose-dependent, apparent stimulated expression by hydrocortisone (EC50 = 4 nM, maximal stimulation at 20 nM). Time-course experiments, however, revealed progressive loss of PST in the absence of corticosteroid. After decay of extant PST in steroid-free medium, hydrocortisone reinduced the expression of PST three to fivefold. Western blots using mouse anti-bovine PST revealed corresponding increases in 32 kDa PST protein levels in response to hydrocortisone. Steady state kinetic analyses indicated apparent Km values of 1—3 μM for 2-naphthol regardless of culture conditions. These results suggest that detoxification of phenolic compounds by sulfation may be regulated by corticosteroids.  相似文献   

6.
In spite of the wide literature describing the biological effects of phenolic compounds, scarce data are available on their absorption from diet. In the present work, we studied the absorption in humans of phenolic acids from beer, a common beverage rich in different phenolic acids with related chemical structures. Beer was analyzed for free and total (free+bound) phenolic acids. Ferulic, caffeic and sinapic acids were present in beer mainly as bound forms, while 4-hydroxyphenylacetic acid and p-coumaric acid were present mainly as free forms. Vanillic acid was present equally in the free and bound forms. Plasma samples were collected before and 30 and 60 min after beer administration and analyzed for free and conjugated phenolic acid content. A significant two- to fourfold increase in plasma levels of phenolic acids was detected with peak concentrations at 30 min after beer ingestion. 4-Hydroxyphenylacetic acid was present in plasma mainly as nonconjugated forms while p-coumaric acid was present equally as nonconjugated and conjugated forms. Ferulic, vanillic and caffeic acids were present in plasma predominantly as conjugated forms, with a slight prevalence of sulfates with respect to glucuronates. Our results indicate that phenolic acids from beer are absorbed from the gastrointestinal tract and are present in blood after being largely metabolized to the form of glucuronide and sulfate conjugates. The extent of conjugation is related to the chemical structure of phenolic acids: the monohydroxy derivatives showing the lowest conjugation degree and the dihydroxy derivatives showing the highest one.  相似文献   

7.
Aims: To determine the effect of several wine-associated, phenolic acids on the growth and viability of strains of Oenococcus oeni and Lactobacillus hilgardii. Methods and Results: Growth was monitored in ethanol-containing medium supplemented with varying concentrations of hydroxybenzoic acids (p-hydroxybenzoic, protocatechuic, gallic, vanillic and syringic acids) and hydroxycinnamic acids (p-coumaric, caffeic and ferulic acids). Progressive inactivation was monitored in ethanol-containing phosphate buffer supplemented in a similar manner to the growth experiments. Hydroxycinnamic acids proved to be more inhibitory to the growth of O. oeni than hydroxybenzoic acids. On the other hand, some acids showed a beneficial effect on growth of Lact. hilgardii. p-Coumaric acid showed the strongest inhibitory effect on growth and survival of both bacteria. Conclusions: Most phenolic acids had a negative effect on growth of O. oeni, for Lact. hilgardii this effect was only noted for p-coumaric acid. Generally, O. oeni was more sensitive to phenolic acid inactivation than Lact. hilgardii. Significance and Impact of the Study: Eight wine-derived, phenolic acids were compared for their effects on wine lactic acid bacteria. Results indicate that phenolic acids have the capacity to influence growth and survival parameters. The differences found between phenolic compounds could be related to their different chemical structures.  相似文献   

8.
The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir) contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively) than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively). p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey). We further examined the antioxidant potential (ORAC assay) of the extracts, their ability to influence viability of prostate cancer (PC-3) and breast cancer (MCF-7) cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC). ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001), p-hydroxybenzoic acid (p<0.01), vanillic acid (p<0.05), caffeic acid (p<0.01), p-coumaric acid (p<0.001) and their total phenolic content (p<0.001). Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively). Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively). In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and antiatherogenic activities which may be attributed, at least in part, to their phenolic acid content.  相似文献   

9.
We have been able to isolate several phytotoxic compounds from aqueous extracts and leachates of cattails (Typha domingensis) using activated charcoal as an absorbant, followed by successive extraction with organic solvents, analysis by GC/MS, and structural elucidation by NMR spectroscopy when possible. The phytotoxins were identified as essential fatty acids (linoleic acid and alpha-linolenic acid) and phenolic compounds of known phytotoxic activity (caffeic acid from the aqueous extracts; caffeic, p-coumaric, and gallic acid from the leachates). Both extracts and the phytotoxins in the extracts have the potential of inhibiting the growth and chlorophyll production of several ecologically relevant species.  相似文献   

10.
Phenol sulfotransferase in humans: properties, regulation, and function   总被引:3,自引:0,他引:3  
Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of phenolic and catechol drugs and neurotransmitters. All human tissues that have been studied in detail contain at least two forms of PST. One form is thermolabile (TL), catalyzes the sulfate conjugation of micromolar concentrations of dopamine and other phenolic monoamines, and is relatively resistant to inhibition by 2,6-dichloro-4-nitrophenol (DCNP). The other form is thermostable (TS), catalyzes the sulfate conjugation of micromolar concentrations of simple phenols such as p-nitrophenol, and is relatively sensitive to DCNP inhibition. These two forms of PST have been physically separated and partially purified from several human tissues, including an easily accessible tissue, the blood platelet. The biochemical properties of platelet PST are very similar to those of PST in human brain, liver, and small intestine. Individual differences in the basal activity of TS PST in the platelet are correlated with individual variations in the activity of this form of the enzyme in human cerebral cortex (r = .94, n = 15, P less than 0.001). In addition, both platelet TS and TL PST activities are correlated significantly with the extent of sulfate conjugation of orally administered drugs such as acetaminophen and methyldopa. These latter observations are compatible with the conclusions that platelet PST activity may reflect the activity of the enzyme at sites of drug metabolism, and that variation in PST activity is one factor responsible for individual differences in the sulfate conjugation of orally administered drugs.  相似文献   

11.
12.
Tea phenolic acids and catechins containing gallic acid moieties are most abundant in green tea, and various medical benefits have been proposed from their consumption. In the following, the cytotoxicities of these major tea phenolics toward isolated rat hepatocytes have been ranked and the mechanisms of cytotoxicity evaluated. The order of cytotoxic effectiveness found was epigallocatechin-3-gallate>propyl gallate>epicatechin-3-gallate>gallic acid, epigallocatechin>epicatechin. Using gallic acid as a model tea phenolic and comparing it with the tea catechins and gallic acid-derivative food supplements, the major cytotoxic mechanism found with hepatocytes was mitochondrial membrane potential collapse and ROS formation. Epigallocatechin-3-gallate was also the most effective at collapsing the mitochondrial membrane potential and inducing ROS formation. Liver injury was also observed in vivo when these tea phenolics were administered ip to mice, as plasma alanine aminotransferase levels were significantly increased. In contrast, GSH conjugation, methylation, metabolism by NAD(P)H:quinone oxidoreductase 1, and formation of an iron complex were important in detoxifying the gallic acid. In addition, for the first time, the GSH conjugates of gallic acid and epigallocatechin-3-gallate have been identified using mass spectrometry. These results add insight into the cytotoxic and cytoprotective mechanisms of the simple tea phenolic acids and the more complex tea catechins.  相似文献   

13.
为了解贵州金刺梨(Rosa sterilis D.Shi)果实和叶片中的活性成分及其抗氧化活性,以贵州普定县金刺梨种植基地的果实和叶片为试材,测定其活性成分含量及其抗氧化活性,并对各项指标进行相关性分析。结果显示:没食子酸、芦丁、槲皮素、儿茶素、鞣花酸、绿原酸、阿魏酸是供试金刺梨果实和叶片的主要酚类成分,金刺梨果实和叶片中活性组分差异显著(P<0.05),果实中p-香豆酸、总黄酮和抗坏血酸的含量相对较高,而叶片中没食子酸、儿茶素、绿原酸、表儿茶素、阿魏酸、鞣花酸、芦丁、槲皮素和总酚含量均高于果实;金刺梨果实抗氧化活性值均显著高于叶片(P<0.05);相关性分析发现:总黄酮对总还原力(TRPA)值的贡献极强,抗坏血酸对Fe3+还原抗氧化能力(FRAP)值贡献最强,槲皮素对ABTS值的贡献最强,说明金刺梨果实和叶片是一种具有较高开发价值的药食同源资源。  相似文献   

14.
Rye seedlings, tillering plants and crop residues were allowed to decompose in model incubation experiments. Young tissues gave rise to high concentrations of allelochemicals, whereas crop residues did not produce inhibitors. Seven phenolic acids were identified in the investigated materials; p-hydroxybenzoic protocatechuic, gallic, vanillic, syringic, p-coumaric, ferulic as well as benzoic acid. However, neither the level of these acids nor the total content of phenolic compounds corresponded to the level of phytotoxicity determined in bioassays. This demonstrated that, apart from phenolics, other unidentified water-soluble organic compounds were also responsible for the toxicity of rye decomposition products. The study was conducted within program CPBP 04.10.03. The study was conducted within program CPBP 04.10.03.  相似文献   

15.
The transepithelial transport of such common dietary phenolic acids as p-coumaric acid (CA) and gallic acid (GA) across Caco-2 cell monolayers was examined. CA transport was dependent on pH, and in a vectorial manner in the apical-basolateral direction. The permeation was concentration-dependent and saturable, the Michaelis constant and maximum velocity being 17.5 mM and 82.7 nmol min(-1) (mg of protein)(-1), respectively. Benzoic acid and acetic acid inhibited the permeation of CA. These results indicate that the transepithelial transport of CA was via the monocarboxylic acid transporter (MCT). On the other hand, the permeation of GA was not in a polarized manner, was independent of pH and linearly increased with increasing concentration of GA. The transport rate of GA was about 100 times lower than that of CA, suggesting the transepithelial transport of GA to be via the paracellular pathway. Dietary phenolic acids thus showed diversified characteristics in their intestinal absorption.  相似文献   

16.
G Levy 《Federation proceedings》1986,45(8):2235-2240
Conjugation with sulfate is a major pathway for the biotransformation of phenolic drugs in humans and many animal species. It is a process of limited capacity; the extent of sulfate conjugate formation and the metabolic clearance of drugs subject to conjugation with sulfate depend therefore on the dose, the dosage form, the route of administration, and the rate and duration of administration as well as on the pharmacokinetic parameters of competing processes. The effect of these variables is exemplified by the pharmacokinetics of salicylamide and acetaminophen in humans and rats. In our experience so far, the proximate cause of the nonlinear pharmacokinetics of sulfate conjugation of phenolic drugs is the limited availability and consequent depletion of inorganic sulfate. When this is prevented by direct or indirect (via sulfate donors such as N-acetylcysteine) repletion, the saturability of phenol sulfotransferase (EC 2.8.2.1) activity can become evident. The major mechanism of inorganic sulfate homeostasis is nonlinear renal clearance, which is due largely to saturable renal tubular reabsorption. Systemic depletion of inorganic sulfate secondary to utilization of this anion for the sulfation of drugs affects the availability of sulfate in the central nervous system and may, therefore, modify the disposition of certain neurotransmitters and other endogenous substances that are subject to sulfate conjugation.  相似文献   

17.
Phenol sulfotransferase inheritance   总被引:1,自引:0,他引:1  
1. Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of many phenolic and catechol neurotransmitters. Human tissues contain both thermostable (TS) and thermolabile (TL) forms of PST that differ in their substrate specificities, inhibitor sensitivities, physical properties, and regulation. 2. Individual variations in the levels of activity of both TS and TL PST in the human platelet are strongly influenced by inheritance. 3. Individual differences in the level of platelet TS PST activity are correlated with individual variations in the activity of this form of the enzyme in human cerebral cortex, liver, and intestinal mucosa. 4. There are also individual familial differences in the thermal stability of TS PST in the platelet. These differences are correlated with individual variations in the thermal stability of TS PST in cerebral cortex, liver, and intestinal mucosa. 5. Individual variations in the thermal stability of TS PST in hepatic tissue are associated with the presence of one or both of a pair of TS PST isozymes that can be separated by ion-exchange chromatography and that differ in their thermal stabilities. 6. This series of observations suggests that a structural gene polymorphism may be one mechanism by which inheritance controls TS PST in humans. The isozymes of TS PST in liver may represent the products of alternative alleles for this polymorphism, alleles that might control the structure of TS PST in many human tissues.  相似文献   

18.
The effects of three natural phenolic acids (caffeic, ferulic, and p-coumaric) on the rat thyroid gland were examined in a 3-week oral-treatment study. Forty male Wistar albino rats, divided into groups of 10 rats each and fed iodine-rich diet, were administered by gastrointestinal tube saline (control), caffeic acid, ferulic acid, or p-coumaric acid at a dose level of 0.25 micromol/kg/day for 3 weeks. The mean absolute and relative thyroid weights in caffeic, ferulic, or p-coumaric acid groups were significantly increased to 127 and 132%, 146 and 153%, or 189 and 201% compared to control value, respectively. Histological examination of the thyroids of p-coumaric acid group revealed marked hypertrophy and/or hyperplasia of the follicles. Caffeic or ferulic groups showed slight to moderate thyroid gland enlargement. Thyroid lesions in p-coumaric acid group were associated with significant increases in cellular proliferation as indicated by [(3)H]thymidine incorporation. In addition, the goitrogenic effect of p-coumaric acid was further confirmed by significant decreases (50%) in serum tri-iodothyronine (T(3)) and thyroxine (T(4)), and a parallel increase (90%) in serum thyroid stimulating hormone (TSH) compared to control group. These results indicate that administration of p-coumaric acid at relatively high doses induces goiter in rats.  相似文献   

19.
An arylamine sulfotransferase (PST-M) from human brain cortex that is involved in the formation of O-sulfate esters of monoamines has been purified 272-fold by ammonium sulfate fractionation, gel filtration, DEAE-cellulose ion-exchange chromatography, chromatofocussing, and hydroxyapatite chromatography. A molecular weight of 62,000, pK of pH 5.8, and an optimum pH for the reaction at 7.8-8.0 with respect to tyramines have been determined. This enzyme possesses an extremely high affinity for dopamine and m-tyramine based on the low Km values and is moderately active toward noradrenaline and p-tyramine. Serotonin is a poor substrate. In contrast, another sulfotransferase, PST-P, which has been separated from PST-M and partially purified, exhibited a very high affinity for phenol and nitrophenols but was inactive toward the amine sulfate acceptors. In the human brain the specific activity toward dopamine as well as the ratio of activity toward dopamine/phenol was considerably higher than those for rat, hog, and bovine brains.  相似文献   

20.
Lactobacillus plantarum NC8 contains a pdc gene coding for p-coumaric acid decarboxylase activity (PDC). A food grade mutant, designated LPD1, in which the chromosomal pdc gene was replaced with the deleted pdc gene copy, was obtained by a two-step homologous recombination process using an unstable replicative vector. The LPD1 mutant strain remained able to weakly metabolize p-coumaric and ferulic acids into vinyl derivatives or into substituted phenyl propionic acids. We have shown that L. plantarum has a second acid phenol decarboxylase enzyme, better induced with ferulic acid than with p-coumaric acid, which also displays inducible acid phenol reductase activity that is mostly active when glucose is added. Those two enzymatic activities are in competition for p-coumaric and ferulic acid degradation, and the ratio of the corresponding derivatives depends on induction conditions. Moreover, PDC appeared to decarboxylate ferulic acid in vitro with a specific activity of about 10 nmol. min(-1). mg(-1) in the presence of ammonium sulfate. Finally, PDC activity was shown to confer a selective advantage on LPNC8 grown in acidic media supplemented with p-coumaric acid, compared to the LPD1 mutant devoid of PDC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号