首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The genome‐wide characterization of long non‐coding RNA (lncRNA) in insects demonstrates their importance in fundamental biological processes. Essentially, an in‐depth understanding of the functional repertoire of lncRNA in insects is pivotal to insect resources utilization and sustainable pest control. Using a custom bioinformatics pipeline, we identified 1861 lncRNAs encoded by 1852 loci in the Sogatella furcifera genome. We profiled lncRNA expression in different developmental stages and observed that the expression of lncRNAs is more highly temporally restricted compared to protein‐coding genes. More up‐regulated Sogatella furcifera lncRNA expressed in the embryo, 4th and 5th instars, suggesting that increased lncRNA levels may play a role in these developmental stages. We compared the relationship between the expression of Sogatella furcifera lncRNA and its nearest protein gene and found that lncRNAs were more correlated to their downstream coding neighbors on the opposite strand. Our genome‐wide profiling of lncRNAs in Sogatella furcifera identifies exciting candidates for characterization of lncRNAs, and also provides information on lncRNA regulation during insect development.  相似文献   

6.
7.
Long non‐coding RNAs (lncRNAs) have been implicated in the regulation of chromatin conformation and epigenetic patterns. lncRNA expression levels are widely taken as an indicator for functional properties. However, the role of RNA processing in modulating distinct features of the same lncRNA is less understood. The establishment of heterochromatin at rRNA genes depends on the processing of IGS‐rRNA into pRNA, a reaction that is impaired in embryonic stem cells (ESCs) and activated only upon differentiation. The production of mature pRNA is essential since it guides the repressor TIP5 to rRNA genes, and IGS‐rRNA abolishes this process. Through screening for IGS‐rRNA‐binding proteins, we here identify the RNA helicase DHX9 as a regulator of pRNA processing. DHX9 binds to rRNA genes only upon ESC differentiation and its activity guides TIP5 to rRNA genes and establishes heterochromatin. Remarkably, ESCs depleted of DHX9 are unable to differentiate and this phenotype is reverted by the addition of pRNA, whereas providing IGS‐rRNA and pRNA mutants deficient for TIP5 binding are not sufficient. Our results reveal insights into lncRNA biogenesis during development and support a model in which the state of rRNA gene chromatin is part of the regulatory network that controls exit from pluripotency and initiation of differentiation pathways.  相似文献   

8.
9.
Colorectal cancer (CRC) is one of the leading causes of cancer‐associated death globally. Long non‐coding RNAs (lncRNAs) have been identified as micro RNA (miRNA) sponges in a competing endogenous RNA (ceRNA) network and are involved in the regulation of mRNA expression. This study aims to construct a lncRNA‐associated ceRNA network and investigate the prognostic biomarkers in CRC. A total of 38 differentially expressed (DE) lncRNAs, 23 DEmiRNAs and 27 DEmRNAs were identified by analysing the expression profiles of CRC obtained from The Cancer Genome Atlas (TCGA). These RNAs were chosen to develop a ceRNA regulatory network of CRC, which comprised 125 edges. Survival analysis showed that four lncRNAs, six miRNAs and five mRNAs were significantly associated with overall survival. A potential regulatory axis of ADAMTS9‐AS2/miR‐32/PHLPP2 was identified from the network. Experimental validation was performed using clinical samples by quantitative real‐time PCR (qRT‐PCR), which showed that expression of the genes in the axis was associated with clinicopathological features and the correlation among them perfectly conformed to the ‘ceRNA theory’. Overexpression of ADAMTS9‐AS2 in colon cancer cell lines significantly inhibited the miR‐32 expression and promoted PHLPP2 expression, while ADAMTS9‐AS2 knockdown had the opposite effects. The constructed novel ceRNA network may provide a comprehensive understanding of the mechanisms of CRC carcinogenesis. The ADAMTS9‐AS2/miR‐32/PHLPP2 regulatory axis may serve as a potential therapeutic target for CRC.  相似文献   

10.
11.
Long non‐coding RNAs (lncRNAs) have been implicated in the regulation of gene expression at various levels. However, to date, the expression profile of lncRNAs in status epilepticus (SE) was unclear. In our study, the expression profile of lncRNAs was investigated by high‐throughput sequencing based on a lithium/pilocarpine‐induced SE model in immature rats. Furthermore, weighted correlation network analysis (WGCNA), gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to construct co‐expression networks and establish functions of the identified hub lncRNAs in SE. The functional role of a hub lncRNA (NONRATT010788.2) in SE was investigated in an in vitro model. Our results indicated that 7082 lncRNAs (3522 up‐regulated and 3560 down‐regulated), which are involved in cell proliferation, inflammatory responses, angiogenesis and autophagy, were dysregulated in the hippocampus of immature rats with SE. Additionally, WGCNA identified 667 up‐regulated hub lncRNAs in turquoise module that were involved in apoptosis, inflammatory responses and angiogenesis via regulation of HIF‐1, p53 and chemokine signalling pathways and via inflammatory mediator regulation of TRP channels. Knockdown of an identified hub lncRNA (NONRATT010788.2) inhibited neuronal apoptosis in vitro. Taken together, our study is the first to demonstrate the expression profile and potential function of lncRNAs in the hippocampus of immature rats with SE. The defined hub lncRNAs may participate in the pathogenesis of SE via lncRNA‐miRNA‐mRNA network.  相似文献   

12.
长链非编码RNAs(long noncoding RNAs, lncRNAs)可在表观遗传水平、转录水平和转录后水平调节基因的表达,对细胞功能起着重要的调节作用。RNA结合蛋白可与很多的RNA结合,并在转录后水平发挥重要的调节作用。然而,RNA结合蛋白是否可以在细胞内广泛结合lncRNAs对其发挥调节作用,仍需进一步证实。本研究通过RNA结合蛋白免疫沉淀技术联合高通量测序(RNA binding protein immunoprecipitation-high throughput sequencing, RIP-Seq)的方法在人肝癌细胞株HepG2中,鉴定与人抗原R(human antigen R, HuR)蛋白相结合的lncRNA分子,并进行了初步的验证。首先,通过HuR-RIP实验分离与HuR蛋白结合的RNA分子,然后高通量测序及生物信息学分析。根据分析结果,鉴定出HepG2细胞中361条与HuR蛋白结合的lncRNAs分子,包括基因间lncRNA(large intergenic noncoding RNA, LincRNA)、内含子lncRNA、与编码基因正义链有重叠的lncRNA和与编码基因反义链有重叠lncRNA(antisense lncRNA)等。并进一步通过RIP-qPCR技术,对其中20条LincRNA分子进行了定量检测,验证测序结果。在HepG2细胞中敲低HuR基因表达,发现这些LincRNA分子中,11条LincRNA分子表达水平显著降低(P<0.05),2条LincRNA显著升高(P<0.05),剩余7条LincRNA表达量未发生变化(P>0.05)。本研究结果说明,HuR在细胞内可以广泛结合lncRNA分子,并且可能对结合的lncRNA分子的表达量产生影响,这也为进一步研究这些lncRNA的功能和HuR调控网络的研究提供了基础。  相似文献   

13.
14.
周瑞  王以鑫  龙科任  蒋岸岸  金龙 《遗传》2018,40(4):292-304
骨骼肌是维持机体功能必不可少的组织,与家养动物的产肉率等重要经济性状密切相关。近年来,高通量测序鉴定了大量与骨骼肌生成相关的长链非编码RNA (long non-coding RNA, lncRNA),它们可作为调节因子在表观调控、转录调控以及转录后调控等多个层面调控基因表达。lncRNA通过靶向关键因子参与调控骨骼肌发育的各个环节,包括骨骼肌干细胞增殖、迁移、分化,成肌细胞增殖、分化、肌管融合,肌纤维肥大和纤维类型转换等过程。本文重点归纳了lncRNA在人和小鼠骨骼肌发育中的分子调控机制,介绍了lncRNA的研究方法,综述了lncRNA在家养动物骨骼肌发育中的研究进展,分析了目前家养动物lncRNA研究所面临的困难和挑战,最后展望了未来家养动物lncRNA研究的方向,以期为进一步阐明骨骼肌生长发育的分子调控机制提供参考。  相似文献   

15.
16.
17.
18.
Long noncoding RNAs (lncRNAs) are important modulators of mesenchymal stem cells (MSCs) in cellular differentiation. However, the regulatory mechanisms of lncRNAs in NEL-like 1 (NELL-1)-induced osteogenic differentiation of human adipose–derived stem cells remain elusive. Expression profiles of lncRNAs and messenger RNAs during NELL-1-induced osteogenesis were obtained using high-throughput sequencing. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene coexpression networks were performed. We identified 323 statistically differentially expressed lncRNAs during osteogenesis and NELL-1-induced osteogenesis, and three lncRNAs (ENST00000602964, ENST00000326734, and TCONS_00006792) were identified as core regulators. Hedgehog pathway markers, including IHH and GLI1, were downregulated, while the antagonists of this pathway (GLI3 and HHIP) were upregulated during NELL-1-induced osteogenesis. In this process, the antagonist of Wnt, SFRP1, was downregulated. According to the analysis, we speculated that lncRNAs played important roles in NELL-1-induced osteogenesis via the crosstalk between Hedgehog and Wnt pathways.  相似文献   

19.
The long noncoding RNAs (lncRNAs) are associated with tumorigenesis and progression of cancer. While DNA methylation is a common epigenetic regulator of gene expression, the methylation of lncRNAs was rarely studied. To address this gap, we integrated DNA methylation and RNA-seq data to characterize the landscape of lncRNA methylation in colon adenocarcinoma (COAD). We collected and analyzed the lncRNA expression and methylation data from The Cancer Genome Atlas and Cancer Cell Line Encyclopedia to identify the epigenetically regulated lncRNAs. We further investigated the biological and clinical relevance of the identified lncRNAs via bioinformatics analysis. We identified 20 epigenetically upregulated lncRNAs in COAD, including several well-studied lncRNAs whose methylation regulation were poorly investigated, such as PVT1 and UCA1. We also revealed several novel tumor-associated lncRNAs in COAD, including GATA2-As1 and CYTOR. Next, we explored their biology function using gene set enrichment analysis and competitive endogenous RNA analysis. We characterized the methylation landscape of lncRNA in COAD and identified 20 epigenetically upregulated lncRNAs. Our findings will shed new light on the epigenetic regulation of lncRNA expression by DNA methylation.  相似文献   

20.
小麦长链非编码RNA的预测及功能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
生物体有部分基因被转录成RNA,但是不编码相应蛋白质,称为长链非编码RNA(lncRNA)。它们参与基因的表观调控,这一过程对动物、植物的生长发育都有重要作用,但是,目前植物中发现和研究的lncRNA较少。为了研究lncRNA在植物中的功能,本研究建立了基于小麦全长cDNA的lncRNA识别程序。从6162条小麦全长cDNA中发现了231条lncRNAs,并从中鉴定出两个新miRNAs,这表明lncRNAs可以通过形成miRNAs前体基因形成其功能。此外,通过序列富集分析,我们从小麦lncRNAs中鉴定出三个保守的调控元件,结果显示小麦lncRNAs可能通过和其它蛋白质或DNA等分子作用,进而参与小麦生长、发育等过程的调控,这些结果对进一步研究植物体内的lncRNA的功能和作用机制具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号