首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
2.
3.
In the present study, the chemical compositions and skin whitening‐related antioxidant and anti‐melanogenic effect of essential oils (EOs) extracted from Chrysanthemum borealeMakino (CBM) (CBMEOs) at vegetative, pre‐flowering and full‐flowering are investigated and contrasted among the three stages. The yields and components of the CBMEOs were different at each stage. The CBMEOs increased DPPH and ABTs scavenging activities and attenuated the α‐melanocyte stimulating hormone (α‐MSH)‐induced tyrosinase activity and melanin synthesis in B16BL6 cells. Among CBMEO components, eugenol had the highest DPPH and ABTs scavenging activities and cuminaldehyde was the strongest inhibitor of α‐MSH‐induced tyrosinase activity and melanin synthesis. The CBMEOs in each stage showed the different levels of phosphorylation of extracellular signal‐regulated kinase1/2 and p38 MAPK. These findings demonstrate that the CBMEOs have antioxidative and anti‐melanogenic activities in all the CBM harvesting stages, resulting in skin‐whitening biological activities and that the levels of their component contents and bioactivities differ among the CBM harvesting stages. The CBMEOs may have the potential for use in cosmetics and alternative medicine.  相似文献   

4.
5.
6.
Ultraviolet light (UV) radiation causes skin‐tanning, which is thought to be mediated by stimulating the release of melanogenic factors from keratinocytes as well as other cells. Nitric oxide (NO) has been reported to be generated after UV radiation and to stimulate melanocytes as one of the melanogens. In a previous experiment by another group on melanogenesis induced by NO, increases in both tyrosinase activity and tyrosinase protein levels were observed after daily stimulation of NO for 4 days. In the present study, we investigated tyrosinase gene expression within the first 24 hr of NO‐induced melanogenesis. Tyrosinase mRNA expression was found to be induced 2 hr after a single treatment with S‐nitroso‐N‐acetyl‐ l ‐arginine. An increase of tyrosinase activity was also detected time‐dependently within the 24‐hr period, accompanied by an increase of tyrosinase protein levels. The induction of mRNA expression was suppressed by a cyclic guanosine 3′,5′‐monophosphate (cGMP)‐dependent protein kinase (cGMP/PKG) inhibitor. These results suggest that the enhancement of tyrosinase gene expression via the cGMP pathway may be a primary mechanism for NO‐induced melanogenesis.  相似文献   

7.
8.
9.
Although L‐tyrosine is well known for its melanogenic effect, the contribution of D‐tyrosine to melanin synthesis was previously unexplored. Here, we reveal that, unlike L‐tyrosine, D‐tyrosine dose‐dependently reduced the melanin contents of human MNT‐1 melanoma cells and primary human melanocytes. In addition, 500 μM of D‐tyrosine completely inhibited 10 μM L‐tyrosine‐induced melanogenesis, and both in vitro assays and L‐DOPA staining MNT‐1 cells showed that tyrosinase activity is reduced by D‐tyrosine treatment. Thus, D‐tyrosine appears to inhibit L‐tyrosine‐mediated melanogenesis by competitively inhibiting tyrosinase activity. Furthermore, we found that D‐tyrosine inhibited melanogenesis induced by α‐MSH treatment or UV irradiation, which are the most common environmental factors responsible for melanin synthesis. Finally, we confirmed that D‐tyrosine reduced melanin synthesis in the epidermal basal layer of a 3D human skin model. Taken together, these data suggest that D‐tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity in melanocyte‐derived cells.  相似文献   

10.
11.
12.
Melanosome movement represents a good model of cytoskeleton‐mediated transport of organelles in eukaryotic cells. We recently observed that inhibiting nitric oxide synthase (NOS) with Nω‐nitro‐l ‐arginine methyl ester (l ‐NAME) induced dispersion in melanophores pre‐aggregated with melatonin. Activation of cyclic adenosine 3′,5′‐monophosphate (cAMP)‐dependent protein kinase (PKA) or calcium‐dependent protein kinase (PKC) is known to cause dispersion. Also, PKC and NO have been shown to regulate the mitogen/extracellular signal‐regulated kinase (MEK)‐ERK pathway. Accordingly, our objective was to further characterize the signaling pathway of l ‐NAME‐induced dispersion. We found that the dispersion was decreased by staurosporine and PD98059, which respectively inhibit PKC and MEK, but not by the PKA inhibitor H89. Furthermore, Western blotting revealed that ERK1 kinase was phosphorylated in l ‐NAME‐dispersed melanophores. l ‐NAME also caused dispersion in latrunculin‐B‐treated cells, suggesting that this effect is not due to inhibition of the melatonin signaling pathway. Summarizing, we observed that PKC and MEK inhibitors decreased the l ‐NAME‐induced dispersion, which caused phosphorylation of ERK1. Our results also suggest that NO is a negative regulator of phosphorylations that leads to organelle transport.  相似文献   

13.
14.
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

15.
Melanocytes characterized by the activities of tyrosinase, tyrosinase‐related protein (TRP)‐1 and TRP‐2 as well as by melanosomes and dendrites are located mainly in the epidermis, dermis and hair bulb of the mammalian skin. Melanocytes differentiate from melanoblasts, undifferentiated precursors, derived from embryonic neural crest cells. Because hair bulb melanocytes are derived from epidermal melanoblasts and melanocytes, the mechanism of the regulation of the proliferation and differentiation of epidermal melanocytes should be clarified. The regulation by the tissue environment, especially by keratinocytes is indispensable in addition to the regulation by genetic factors in melanocytes. Recent advances in the techniques of tissue culture and biochemistry have enabled us to clarify factors derived from keratinocytes. Alpha‐melanocyte‐stimulating hormone, adrenocorticotrophic hormone, basic fibroblast growth factor, nerve growth factor, endothelins, granulocyte‐macrophage colony‐stimulating factor, steel factor, leukemia inhibitory factor and hepatocyte growth factor have been suggested to be the keratinocyte‐derived factors and to regulate the proliferation and/or differentiation of mammalian epidermal melanocytes. Numerous factors may be produced in and released from keratinocytes and be involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes through receptor‐mediated signaling pathways.  相似文献   

16.
To evaluate the etiologic role of ultraviolet (UV) radiation in acquired dermal melanocytosis (ADM), we investigated the effects of UVA and UVB irradiation on the development and differentiation of melanocytes in primary cultures of mouse neural crest cells (NCC) by counting the numbers of cells positive for KIT (the receptor for stem cell factor) and for the L ‐3,4‐dihydroxyphenylalanine (DOPA) oxidase reaction. No significant differences were found in the number of KIT‐ or DOPA‐positive cells between the UV‐irradiated cultures and the non‐irradiated cultures. We then examined the effects of UV light on KIT‐positive cell lines derived from mouse NCC cultures. Irradiation with UVA but not with UVB inhibited the tyrosinase activity in a tyrosinase‐positive cell line (NCCmelan5). Tyrosinase activity in the cells was markedly enhanced by treatment with α‐melanocyte‐stimulating hormone (α‐MSH), but that stimulation was inhibited by UVA or by UVB irradiation. Irradiation with UVA or UVB did not induce tyrosinase activity in a tyrosinase‐negative cell line (NCCmelb4). Levels of KIT expression in NCCmelan5 cells and in NCCmelb4 cells were significantly decreased after UV irradiation. Phosphorylation levels of extracellular signal‐regulated kinase 1/2 in cells stimulated with stem cell factor were also diminished after UV irradiation. These results suggest that UV irradiation does not stimulate but rather suppresses mouse NCC. Thus if UV irradiation is a causative factor for ADM lesions, it would not act directly on dermal melanocytes but may act in indirect manners, for instance, via the overproduction of melanogenic cytokines such as α‐MSH and/or endothelin‐1.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号