首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K L Kovács  A Dér 《Biochimie》1986,68(1):211-215
The effects of surfactants, lipids and amphiphilic viologen mediators on H2 production from dithionite as well as on Ru(bpy) sensitized H2 photoproduction by hydrogenase from Thiocapsa roseopersicina was studied. Three systems which differed as to the nature of the hydrophobic matrix around the hydrogenase were tested. An enhanced hydrogenase activity was observed in the presence of surfactants, in the 1-6 mM concentration range. Hydrogenase showed a selectivity for the amphiphilic viologens, 2C7-diCl was the most efficient electron mediator in both reactions. H2 photoproduction seemed not to be feasible in the detergent-hydrogenase system because of intensive foaming. Hydrogenase incorporated into liposomes catalyzed H2 photoevolution efficiently but the rate was decreasing in time, though reversibly. Using intact bacterial cells instead of purified hydrogenase yielded stable H2 photoevolution for at least 12 hours. This system offers several advantages for potential practical applications.  相似文献   

2.
Clostridial hydrogenase was introduced into a cyanobacterium, Synechococcus elongatus, by direct electroporation. The introduced hydrogenase activity was 11 nmol H evolved with reduced Methyl Viologen per mg chlorophyll. The cells with clostridial hydrogenase showed simultaneous light-dependent evolution of H and O . This method will be applicable to assess a variety of hydrogenases for hydrogen production coupled with cyanobacterial photo-synthesis.  相似文献   

3.
In order to determine the effects of the deletion of hydrogenase genes on nitrogenase-based photobiological H(2) productivity by heterocystous N(2)-fixing cyanobacteria, we have constructed three hydrogenase mutants from Anabaena sp. PCC 7120: hupL(-) (deficient in the uptake hydrogenase), hoxH(-) (deficient in the bidirectional hydrogenase), and hupL(-)/ hoxH(-) (deficient in both genes). The hupL(-) mutant produced H(2) at a rate four to seven times that of the wild-type under optimal conditions. The hoxH(-) mutant produced significantly lower amounts of H(2) and had slightly lower nitrogenase activity than wild-type. H(2) production by the hupL(-)/ hoxH(-) mutant was slightly lower than, but almost equal to, that of the hupL(-) mutant. The efficiency of light energy conversion to H(2) by the hupL(-) mutant at its highest H(2) production stage was 1.2% at an actinic visible light intensity of 10 W/m(2) (PAR) under argon atmosphere. These results indicate that deletion of the hupL gene could be employed as a source for further improvement of H(2) production in a nitrogenase-based photobiological H(2) production system.  相似文献   

4.
Nitrite, NO, CO, and C2H2 inhibited O2-dependent H2 uptake (H3H oxidation) in denitrifying Azospirillum brasilense Sp7 grown anaerobically on N2O or NO3-. The apparent Ki values for inhibition of O2-dependent H2 uptake were 20 microM for NO2-, 0.4 microM for NO, 28 microM for CO, and 88 microM for C2H2. These inhibitors also affected methylene blue-dependent H2 uptake, presumably by acting directly on the hydrogenase. Nitrite and NO inhibited H2 uptake irreversibly, whereas inhibition due to CO was easily reversed by repeatedly evacuating and backfilling with N2. The C2H2 inhibition was not readily reversed, partly due to difficulty in removing the last traces of this gas from solution. The NO2- inhibition of malate-dependent respiration was readily reversed by repeatedly washing the cells, in contrast to the effect of NO2- on H2-dependent respiration. These results suggest that the low hydrogenase activities observed in NO3(-)-grown cultures of A. brasilense may be due to the irreversible inhibition of hydrogenase by NO2- and NO produced by NO3- reduction.  相似文献   

5.
The production of renewable fuels, such as ethanol, has been steadily increasing owing to the need for a reduced dependency on fossil fuels. It was demonstrated previously that biomass-generated synthesis gas (biomass-syngas) can be converted to ethanol and acetic acid using a microbial catalyst. The biomass-syngas (primarily CO, CO(2), H(2), and N(2)) was generated in a fluidized-bed gasifier and used as a substrate for Clostridium carboxidivorans P7(T). Results showed that the cells stopped consuming H(2) when exposed to biomass-syngas, thus indicating that there was an inhibition of the hydrogenase enzyme due to some biomass-syngas contaminant. It was hypothesized that nitric oxide (NO) detected in the biomass-syngas could be the possible cause of this inhibition. The specific activity of hydrogenase was monitored with time under varying concentrations of H(2) and NO. Results indicated that NO (at gas concentrations above 40 ppm) was a non-competitive inhibitor of hydrogenase activity, although the loss of hydrogenase activity was reversible. In addition, NO also affected the cell growth and increased the amount of ethanol produced. A kinetic model of hydrogenase activity with inhibition by NO was demonstrated with results suggesting there are multiple binding sites of NO on the hydrogenase enzyme. Since other syngas-fermenting organisms utilize the same metabolic pathways, this study estimates that NO < 40 ppm can be tolerated by cells in a syngas-fermentation system without compromising the hydrogenase activity, cell growth, and product distribution.  相似文献   

6.
光合细菌产氢因子的研究进展   总被引:11,自引:0,他引:11  
光合细菌在固氮的同时释放氢气。产氢与固氮是同步进行的。固氮酶与氢酶共同影响光合细菌的产氢活性,而外源生理条件又影响着固氮酶与氢酶的活性,其中有机碳阻抑吸氢酶表达,促进产氢;氨则抑制固氮活性而降低产氢量;氧气的存在使固氮酶与氢酶都失活,从而抑制放氢反应的进行。  相似文献   

7.
Inducer, inhibitor, and mutant studies on three hydrogenase activities of Rhodospirillum rubrum indicate that they are mediated by three distinct hydrogenase enzymes. Uptake hydrogenase mediates H2 uptake to an unknown physiological acceptor or methylene blue and is maximally synthesized during autotrophic growth in light. Formate-linked hydrogenase is synthesized primarily during growth in darkness or when light becomes limiting, and links formate oxidation to H2 production. Carbon-monoxide-linked hydrogenase is induced whenever CO is present and couples CO oxidation to H2 evolution. The enzymes can be expressed singly or conjointly depending on growth conditions, and the inhibitor or inducer added. All three hydrogenases can use methyl viologen as the mediator for both the H2 evolution and H2 uptake reactions while displaying distinct pH optima, reversibility, and sensitivity to C2H2 gas. Yet, we present evidence that the CO-linked hydrogenase, unlike the uptake hydrogenase, does not link to methylene blue as the electron acceptor. These differences allow conditions to be established to quantitatively assay each hydrogenase independently of the others both in vivo and in vitro.  相似文献   

8.
Escherichia coli can perform at least two modes of anaerobic hydrogen metabolism and expresses at least two types of hydrogenase activity. Respiratory hydrogen oxidation is catalysed by two 'uptake' hydrogenase isoenzymes, hydrogenase -1 and -2 (Hyd-1 and -2), and fermentative hydrogen production is catalysed by Hyd-3. Harnessing and enhancing the metabolic capability of E. coli to perform anaerobic mixed-acid fermentation is therefore an attractive approach for bio-hydrogen production from sugars. In this work, the effects of genetic modification of the genes encoding the uptake hydrogenases, as well as the importance of preculture conditions, on hydrogen production and fermentation balance were examined. In suspensions of resting cells pregrown aerobically with formate, deletions in Hyd-3 abolished hydrogen production, whereas the deletion of both uptake hydrogenases improved hydrogen production by 37% over the parent strain. Under fermentative conditions, respiratory H2 uptake activity was absent in strains lacking Hyd-2. The effect of a deletion in hycA on H2 production was found to be dependent upon environmental conditions, but H2 uptake was not significantly affected by this mutation.  相似文献   

9.
In a previous work (Trchounian et al., Biol. Membrany 16:416-428 (1999) (in Russian)) we reported the interrelations between production of H2 and H+-K+ exchange in fermenting Escherichia coli grown under anaerobic conditions at pH 7.5. The ion fluxes had stable stoichiometry 2H+/K+ and were N,N'-dicyclohexylcarbodiimide (DCC)-inhibitable at different external pH and K+ activity. In the present study, the H2 production was further studied in fermenting bacteria grown at pH 7.5 or 6.5. The H2 production was inhibited by DCC and did not occur if bacteria were grown at pH 7.5 in a medium containing formate or upon hypoosmotic stress. The H2 production was not sensitive to osmotic stress when bacteria were grown at pH 6.5. Formation of H2 and 2H+/K+ exchange were not observed in mutants with deletions of the hyfoperon genes, encoding membrane-associated hydrogenase 4. K+ influx in these mutants was not sensitive to valinomycin, in contrast to the K+ influx in the parental strain. If grown at pH 6.5, the mutants produced H2 and carried out 2H+/K+ exchange, when subjected to the hyperosmotic stress. The results suggest a participation of hydrogenase 4 in the production of H2 and proton-potassium exchange in fermenting E. coli grown at pH 7.5. In bacteria grown at pH 6.5 or in a medium containing formate, another membrane-bound hydrogenase, namely hydrogenase 3, may be responsible for the H2 production.  相似文献   

10.
Developing microbes into a sustainable source of hydrogen gas (H2) will require maximizing intracellular reductant flow toward the H2-producing enzymes. Recent attempts to increase H2 production in dark fermentative bacteria include increasing oxidation of organic substrates through metabolic engineering and expression of exogenous hydrogenases. In photofermentative bacteria, H2 production can be increased by minimizing reductant flow into competing pathways such as biomass formation and the Calvin cycle. One method of directing reductant toward H2 production being investigated in oxygenic phototrophs, which could potentially be applied to other H2-producing organisms, is the tethering of electron donors and acceptors, such as hydrogenase and photosystem I, to create new intermolecular electron transfer pathways.  相似文献   

11.
Different patterns have been found in the pH dependence of hydrogenase activity with enzymes purified from different species of Desulfovibrio. With the cytoplasmic hydrogenase from Desulfovibrio baculatus strain 9974, the pH optima in H2 production and uptake were respectively 4.0 and 7.5 with a higher activity in production than in uptake. The highest D2-H+ exchange activity was found also at pH 4.0 but the optima differed for the HD and the H2 components. Both similarly rose when the pH decreased from 9.0 to 4.5, but the rate of H2 evolution slowed whereas the HD evolution continued rising till pH values around 3.0 were reached. The H2 to HD ratio at pH above 4.5 was higher than one. With the periplasmic hydrogenase from Desulfovibrio vulgaris Hildenborough, the highest exchange activity was near pH 5.5, the same value as in hydrogen production. The periplasmic hydrogenase from Desulfovibrio gigas had in contrast the same pH optimum in the exchange (7.5-8.0) as in the H2 uptake. The ratio of H2 to HD was below one for both enzymes. These different patterns may be related to functional and structural differences in the three hydrogenases so far studied, particularly in the composition of their catalytic centers.  相似文献   

12.
The work describes a novel approach for sustained photobiological production of H(2) gas via the reversible hydrogenase pathway in the green alga Chlamydomonas reinhardtii. This single-organism, two-stage H(2) production method circumvents the severe O(2) sensitivity of the reversible hydrogenase by temporally separating photosynthetic O(2) evolution and carbon accumulation (stage 1) from the consumption of cellular metabolites and concomitant H(2) production (stage 2). A transition from stage 1 to stage 2 was effected upon S deprivation of the culture, which reversibly inactivated photosystem II (PSII) and O(2) evolution. Under these conditions, oxidative respiration by the cells in the light depleted O(2) and caused anaerobiosis in the culture, which was necessary and sufficient for the induction of the reversible hydrogenase. Subsequently, sustained cellular H(2) gas production was observed in the light but not in the dark. The mechanism of H(2) production entailed protein consumption and electron transport from endogenous substrate to the cytochrome b(6)-f and PSI complexes in the chloroplast thylakoids. Light absorption by PSI was required for H(2) evolution, suggesting that photoreduction of ferredoxin is followed by electron donation to the reversible hydrogenase. The latter catalyzes the reduction of protons to molecular H(2) in the chloroplast stroma.  相似文献   

13.
14.
Hydrogenase activities in cyanobacteria   总被引:3,自引:0,他引:3  
In the unicellular Anacystis nidulans, the expression of both the H2-uptake (with phenazine methosulfate or methylene blue as the electron acceptor) and H2-evolution (with methyl viologen reduced by Na2S2O4) was dependent on Ni in the culture medium. In extracts from Anacystis and Anabaena 7119, H2-evolution and uptake activities were strongly inhibited by Cu2+, p-chloromercuribenzoate and HgCl2 suggesting that at least one functional SH-group is involved in catalysis by hydrogenase. Extracts from the N2-fixing Anabaena 7119 contained two different hydrogenase fractions which could be separated by chromatography on DE-52 cellulose using a linear NaCl concentration gradient. The fraction eluting with 0.13 M NaCl from the column catalyzed only the uptake of H2 with methylene blue as the electron acceptor but virtually not the evolution of H2 ("uptake" hydrogenase fraction). The fraction eluting at a NaCl strength of 0.195 M catalyzed both H2-uptake with methylene blue and H2-evolution with reduced methyl viologen ("reversible" hydrogenase fraction). Growth under anaerobic conditions drastically enhanced the activity levels of the "reversible" but not of the "uptake" hydrogenase fraction. The "uptake" hydrogenase but not the "reversible" protein was activated by reduced thioredoxin. It is suggested that thioredoxin activates the H2-uptake by the membrane-bound "uptake" hydrogenase also in intact cells. The occurrence of the number of hydrogenases in cyanobacteria will be reevaluated.  相似文献   

15.
Previous studies showed that cell suspensions of unicellular nondiazotrophic cyanobacterium G. alpicola grown under nitrate-limiting conditions intensively produces H2 via fermentation of endogenous glycogen with hydrogen yield more then 90% of theoretical maximum (3.8 mol H2 per mol glucose). H2 production is realized by a Hox hydrogenase on the stages of NAD(P)H generation. Exploiting this property, the two-stage cyclic system for sustained hydrogen production was developed using a photobioreactor (PhBR) with G. alpicola immobilized on glass fiber TR-0.3. Immobilization of the cells on the matrix occurred during growth directly in PhBR operated in continuous mode; the density of culture immobilized achieved 37 g Chl alpha cm(-2). The first stage of the cycle was the photosynthetic incubations of G. alpicola in the flow of the culture medium, which contained limiting concentrations of nitrate for efficient glycogen accumulation and activation of hydrogenase. The second stage was the fermentation of glycogen, with H2 production realized in darkness with continuous Ar sparging and without medium flow. Standardization of optimal parameters for both stages provided a stable cyclic regime of the system: photosynthesis (24 hours)-fermentation (24 hours). The total amount of H2 evolved in one cycle was 957.6 mL L(-1)(matrix), and the overage rate of H2 production during the cycle (48 hours) was about 20 mL h(-1) L(-1)(matrix). Ten consequent cycles was carried out in this regime with reproducible H2 production, although PhBR with the same sample of immobilized culture was operated over a period of more then three months.  相似文献   

16.
Anions modulate hydrogenase activity in cell-free preparations of Chlamydomonas reinhardtii, and this modulation is greatly influenced by the charge properties of the redox agent included to mediate electron transfer to hydrogenase. With cationic methyl viologen as the electron mediator, anions stimulate the maximum velocity of H2 production (e.g., a 320% increase in the presence of 1 M NaCl) but have little effect on the Km for methyl viologen. Conversely, when hydrogenase activity is mediated by polyanionic metatungstate or ferredoxin, H2 production is strongly inhibited by anions (e.g., 70-77% inhibition by 0.2 M NaCl). This inhibition is primarily due to a reduced affinity of hydrogenase for these mediators (as evidenced by a large increase in Km values), rather than a change in the maximum velocity of the reaction. Anions have little effect on the kinetics of hydrogenase activity mediated by zwitterionic sulfonatopropyl viologen, a redox agent with a nearly neutral net charge. These results suggest the presence of a cationic region near the active site of hydrogenase. This cationic region, probably due to lysine and/or arginine residues, may serve in vivo to facilitate the interaction between hydrogenase and ferredoxin, the polyanionic, physiological electron mediator.  相似文献   

17.
Duché O  Elsen S  Cournac L  Colbeau A 《The FEBS journal》2005,272(15):3899-3908
In the photosynthetic bacterium Rhodobacter capsulatus, the synthesis of the energy-producing hydrogenase, HupSL, is regulated by the substrate H2, which is detected by a regulatory hydrogenase, HupUV. The HupUV protein exhibits typical features of [NiFe] hydrogenases but, interestingly, is resistant to inactivation by O2. Understanding the O2 resistance of HupUV will help in the design of hydrogenases with high potential for biotechnological applications. To test whether this property results from O2 inaccessibility to the active site, we introduced two mutations in order to enlarge the gas access channel in the HupUV protein. We showed that such mutations (Ile65-->Val and Phe113-->Leu in HupV) rendered HupUV sensitive to O2 inactivation. Also, in contrast with the wild-type protein, the mutated protein exhibited an increase in hydrogenase activity after reductive activation in the presence of reduced methyl viologen (up to 30% of the activity of the wild-type). The H2-sensing HupUV protein is the first component of the H2-transduction cascade, which, together with the two-component system HupT/HupR, regulates HupSL synthesis in response to H2 availability. In vitro, the purified mutant HupUV protein was able to interact with the histidine kinase HupT. In vivo, the mutant protein exhibited the same hydrogenase activity as the wild-type enzyme and was equally able to repress HupSL synthesis in the absence of H2.  相似文献   

18.
Regulation of hydrogenase in Rhizobium japonicum.   总被引:7,自引:5,他引:7       下载免费PDF全文
Factors that regulate the expression of an H2 uptake system in free-living cultures of Rhizobium japonicum have been investigated. Rapid rates of H2 uptake by R. japonicum were obtained by incubation of cell suspensions in a Mg-phosphate buffer under a gas phase of 86.7% N2, 8.3% H2, 4.2% CO2, and 0.8% O2. Cultures incubated under conditions comparable with those above, with the exception that Ar replaced H2, showed no hydrogenase activity. When H2 was removed after initiation of hydrogenase derepression, further increase in hydrogenase activity ceased. Nitrogenase activity was not essential for expression of hydrogenase activity. All usable carbon substrates tested repressed hydrogenase formation, but none of them inhibited hydrogenase activity. No effect on hydrogenase formation was observed from the addition of KNO3 or NH4Cl at 10 mM. Oxygen repressed hydrogenase formation, but did not inhibit activity of the enzyme in whole cells. The addition of rifampin or chloramphenicol to derepressed cultures resulted in inhibition of enzyme formation similar to that observed by O2 repression. The removal of CO2 during derepression caused a decrease in the rate of hydrogenase formation. No direct effect of CO2 on hydrogenase activity was observed.  相似文献   

19.
20.
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H(2) photoproduction. However, a mutation in a structural hup gene did not result in maximum H(2) production rates, indicating that the capacity to recycle H(2) was not completely lost. Highest H(2) production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H(2) recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号