首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasminogen and plasminogen derivatives which contain lysine-binding sites were found to decrease the reaction rate between plasmin and alpha2-antiplasmin by competing with plasmin for the complementary site(s) in alpha2-antiplasmin. The dissocwation constant Kd for the interaction between intact plasminogen (Glu-plasminogen) and alpha2-antiplasmin is 4.0 microM but those for Lys-plasminogen or TLCK-plasmin are about 10-fold lower indicating a stronger interaction. The lysine-binding site(s) which is situated in triple-loops 1--3 in the plasmin A-chain is mainly responsible for the interaction with alpha2-antiplasmin. The interaction between Glu-plasminogen and alpha2-antiplasmin furthermore enhances the activation of Glu-plasminogen by urokinase to a comparable extent as 6-aminohexanoic acid, suggesting that similar conformational changes occur in the proenzyme after complex formation. Fibrinogen, fibrinogen digested with plasmin, purified fragment E and purified fragment D interfere with the reaction between plasmin and alpha2-antiplasmin by competing with alpha2-antiplasmin for the lysine-binding site(s) in the plasmin A-chain. The Kd obtained for these interactions varied between 0.2 microM and 1.4 microM; fragment E being the most effective. Thus the fibrinogen molecule contains several complementary sites to the lysine-binding sites located both in its NH2-terminal and COOH-terminal regions; these sites are to a large extent.  相似文献   

2.
Affinity-chromatographic purification of human alpha 2-antiplasmin.   总被引:10,自引:4,他引:6       下载免费PDF全文
A new simple and efficient purification method for alpha 2-antiplasmin is described that is based on the interaction between alpha 2-antiplasmin and a fragment from elastase-digested plasminogen constituting the three N-terminal triple-loop structures in the plasmin A-chain (LBSI). After a single-step adsorption of the alpha 2-antiplasmin from plasminogen-depleted plasma to LBSI-Sepharose and elution with 6-aminohexanoic acid, an 80-90% pure preparation with a yield of 50-60% is obtained. The major impurity is fibrinogen, which can easily be removed by gel filtration, and, as a result, a homogeneous fully active alpha 2-antiplasmin preparation is obtained that has the same properties as previously described for alpha 2-antiplasmin. Evidence is put forward that a form of alpha 2-antiplasmin with less affinity for the lysine-binding sites in plasminogen may exist, even in unfractionated plasma.  相似文献   

3.
The molecular interactions between the plasminogen-staphylokinase complex, alpha 2-antiplasmin and fibrin were studied by measuring the effect of CNBr-digested fibrinogen on the inhibition rate of the plasminogen-staphylokinase complex by alpha 2-antiplasmin. The second-order rate constant for the inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin was 2.7 +/- 0.3.10(6) M-1 s-1 (mean +/- S.D.; n = 7). Addition of CNBr-digested fibrinogen, but not of fibrinogen, resulted in a concentration-dependent reduction of the apparent inhibition rate constant, with a 50 percent reduction at a concentration of 5 nM CNBr-digested fibrinogen. The second-order rate constant for the inhibition of the low-Mr plasminogen-staphylokinase complex (plasminogen lacking the kringle structures comprising the lysine-binding sites) by alpha 2-antiplasmin was about 30-fold lower (9.3 +/- 0.7.10(4) M-1 s-1, mean +/- S.D.; n = 4) than that of plasminogen-staphylokinase and was not affected by addition of CNBr-digested fibrinogen. Inhibition of the plasminogen-staphylokinase complex by the chloromethylketone D-Val-Phe-Lys-Ch2Cl is 9-fold less efficient than that of plasmin (k2/Ki of 700 M-1 s-1 versus 6300 M-1 s-1). Our results confirm and establish that rapid inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin requires the availability of the lysine-binding sites in the plasminogen moiety of the complex. Fibrin, but not fibrinogen, reduces the inhibition rate by alpha 2-antiplasmin by competition for interaction with the lysine-binding site. Protection of the plasminogen-staphylokinase complex bound to fibrin from rapid inhibition by alpha 2-antiplasmin thus appears to contribute to the fibrin-specificity of clot lysis with staphylokinase in a plasma milieu, by allowing preferential plasminogen activation at the fibrin surface, while the free complex is rapidly inhibited in plasma.  相似文献   

4.
Bovine and human blood plasma contains alpha 2-antiplasmin which possesses affinity to lysin-binding sites in plasmin and inhibits the human plasmin. Its isolation was conducted for two stages: separation of plasminogen on lysin-cellulose, fractionation by ammonium sulphate, desalination on molselector G-25, chromatography on DEAE-Sephadex A-50 and affinity chromatography on plasmin-sepharose with the blocked active site.  相似文献   

5.
L A Miles  E F Plow 《Biochemistry》1986,25(22):6926-6933
An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [125I]EDP I, [125I]Glu-plasminogen, and [125I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [125I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and 1730 microM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region (EDP I, Glu-plasminogen, Lys-plasminogen, and the plasmin heavy chain) and did not react with those lacking an EDP I region [miniplasminogen, the plasmin light chain or EDP II (kringle 4)] or with tissue plasminogen activator or prothrombin, which also contain kringles. By immunoblotting analyses, a chymotryptic degradation product of Mr 20,000 was derived from EDP I that retained reactivity with the antibody. The high-affinity lysine binding site was equally available to the antibody probe in Glu- and Lys-plasminogen and also appeared to be unoccupied in the plasmin-alpha 2-antiplasmin complex. alpha 2-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The kinetic of plasmin, Va1442-plasmin, Lys530-plasmin inhibition reaction by alpha 2-antiplasmin as well as interaction of the inhibitor with different derivatives of the plasminogen and its fragments were studied. It was shown that plasmin, mini- and micro-plasmin activity decreased by 97, 88 and 85%, respectively, for equimolar ratio 1:1 of the inhibitor. The value of the inhibition reached its maximum in 1-2, 5-10 and 10-15 min, respectively. The constants of the complex formation rate were 1.4 x 10(6); 1.7 x 10(5) and 6.2 x 10(4) M-1s-1 for the plasmin, mini- and micro-plasmin with alpha 2-antiplasmin, respectively. Both 10(-2) M 6-aminohexanoic acid and 10(-1) M arginine reduced the complex formation rate between plasmin, mini-plasmin and alpha 2-antiplasmin to the value of the rate reaction between micro-plasmin and inhibitor. alpha 2-Antiplasmin bound with all investigated derivatives and fragments of plasminogen. The amount of inhibitor decreased in the series: plasmin, kringle 1-3, kringle 4, mini-plasminogen, micro-plasminogen. The kringle 1-4 and kringle 5 were determined to control the rate of reaction between enzyme and inhibitor, being not necessary for the inhibition. The comparison of the inhibitor interaction with DPP-plasmin, mini-plasminogen and micro-plasminogen displayed the possibility of the additional region existence in catalytic domain. This region participated in the complex with alpha 2-antiplasmin formation. It is supposed that the multisite interaction between plasmin and alpha 2-antiplasmin provides for the specificity and efficiency the inhibitor action.  相似文献   

7.
One of thirty murine monoclonal antibodies, raised by immunization with human plasmin-alpha 2-antiplasmin complex, was found to be directed against the high-affinity lysine-binding site in plasminogen. Indeed, this antibody (MA-HAL) reacted with plasminogen and with a fragment of plasminogen composed of the first three triple-loop structures (LBS I) and was displaced by 6-aminohexanoic acid (50% displacement at 25 microM). In competitive radioimmunoassays the binding of radiolabeled plasminogen to MA-HAL was reduced to 50% with 2.3 microM alpha 2-antiplasmin or 1.3 microM histidine-rich glycoprotein, which corresponds to the known dissociation constants between these ligands and the high-affinity lysine-binding site of plasminogen. MA-HAL did not influence the activation of plasminogen by tissue-type plasminogen activator in the absence of CNBr-digested fibrinogen, but abolished the effect of CNBr-digested fibrinogen on the Michaelis constant of the reaction. MA-HAL reduced the reaction rate between plasmin and alpha 2-antiplasmin by a factor 20 and abolished the binding of plasminogen to fibrin. These results indicate that MA-HAL specifically binds to and masks the high-affinity lysine-binding site of plasminogen. It therefore is a useful tool for the investigation of the role of this structure in the regulation of fibrinolysis, both at the level of fibrin-stimulated activation of plasminogen and of the inhibition of generated plasmin.  相似文献   

8.
Interaction of streptokinase and alpha-2-antiplasmin with plasmin and plasminogen fragments was compared. Binding sites on the enzyme become half-saturated, streptokinase and alpha-2-antiplasmin concentration being 8.5 and 30 nM, respectively. 6-Aminohexanoic acid in concentration of 20 mM reduces the adsorption of streptokinase and and alpha-2-antiplasmin by 20 and 60%, respectively. From all the investigated fragments, streptokinase shows the greatest affinity for mini-plasminogen and alpha-2-antiplasmin for kringles 1-3. Both proteins in the presence of 20 mM 6-aminohexanoic acid do not bind with kringle domains. Arginine dose 0.1 M does not influence streptokinase adsorption on mini-plasminogen and decreases the value of alpha-2-antiplasmin binding with mini-plasminogen by 50%. The data obtained indicate that plasminogen molecule has the sites of the highest affinity for streptokinase on the serine-proteinase domain, however for alpha-2-antiplasmin it is in the kringles 1-3. Streptokinase with equimolar quantity in respect of alpha-2-antiplasmin inhibits the adsorption of alpha-2-antiplasmin on the plasmin by 70% and in the presence of 6-aminohexanoic acid it is inhibited completely. Addition of streptokinase also increases the influence of increasing concentration of the acid. Inhibiting influence of streptokinase decreases, and that of 6-aminohexanoic acid increases, when plasmin is modified with diisopropylfluorophosphate in its active centre. At the same time maximum inhibition of streptokinase adsorption on the plasmin at different concentrations of alpha-2-antiplasmin and 6-aminohexanoic acid accounts for only 20%. We suppose that in the process of complex formation streptokinase competes with alpha-2-antiplasmin for the binding sites on the catalytic domain of the plasmin. Partial or complete blocking of the plasmin active centre contact zone by streptokinase effectively protects it from inhibition by alpha-2-antiplasmin.  相似文献   

9.
《The Journal of cell biology》1986,103(6):2411-2420
The capacity of cells to interact with the plasminogen activator, urokinase, and the zymogen, plasminogen, was assessed using the promyeloid leukemic U937 cell line and the diploid fetal lung GM1380 fibroblast cell line. Urokinase bound to both cell lines in a time- dependent, specific, and saturable manner (Kd = 0.8-2.0 nM). An active catalytic site was not required for urokinase binding to the cells, and 55,000-mol-wt urokinase was selectively recognized. Plasminogen also bound to the two cell lines in a specific and saturable manner. This interaction occurred with a Kd of 0.8-0.9 microM and was of very high capacity (1.6-3.1 X 10(7) molecules bound/cell). The interaction of plasminogen with both cell types was partially sensitive to trypsinization of the cells and required an unoccupied high affinity lysine-binding site in the ligand. When plasminogen was added to the GM1380 cells, a line with high intrinsic plasminogen activator activity, the bound ligand was comprised of both plasminogen and plasmin. Urokinase, in catalytically active or inactive form, enhanced plasminogen binding to the two cell lines by 1.4-3.3-fold. Plasmin was the predominant form of the bound ligand when active urokinase was added, and preformed plasmin can also bind directly to the cells. Plasmin on the cell surface was also protected from its primary inhibitor, alpha 2-antiplasmin. These results indicate that the two cell lines possess specific binding sites for plasminogen and urokinase, and a family of widely distributed cellular receptors for these components may be considered. Endogenous or exogenous plasminogen activators can generate plasmin on cell surfaces, and such activation may provide a mechanism for arming cell surfaces with the broad proteolytic activity of this enzyme.  相似文献   

10.
Interaction of tissue plasminogen activator with alpha-2-antiplasmin and its influence on tissue activator binding to fibrin was studied. Alpha-2-Antiplasmin decreases the binding of tissue activator to fibrin by 20%. The inhibitor formed a complex with tissue plasminogen activator (Kd 78.2 nM) and had no effect on amidolytic activity of the activator. The tissue activator binding to alpha-2-antiplasmin decreases by 20-35% in the presence of 6-aminohexanoic acid. It indicates that not only kringle 2 of the tissue activator molecule takes part in complex formation with alpha-2-antiplasmin, but also other activator domains. Two models were proposed to explain the alpha-2-antiplasmin effect on the Glu-plasminogen activation by tissue activator on fibrin. In the first place, the inhibitor binds to fibrin in the site where the activator complex is localized. It can create steric hindrances for the proenzyme interaction with its activator on fibrin. In the second place, alpha-2-antiplasmin in a complex with tissue plasminogen activator can bring to a change in the activator conformation and a decrease of its functional activity.  相似文献   

11.
The plasminogen activator, surface protease Pla, of the plague bacterium Yersinia pestis is an important virulence factor that enables the spread of Y. pestis from subcutaneous sites into circulation. Pla-expressing Y. pestis and recombinant Escherichia coli formed active plasmin in the presence of the major human plasmin inhibitor, alpha2-antiplasmin, and the bacteria were found to inactivate alpha2-antiplasmin. In contrast, only poor plasminogen activation and no cleavage of alpha2-antiplasmin was observed with recombinant bacteria expressing the homologous gene ompT from E. coli. A beta-barrel topology model for Pla and OmpT predicted 10 transmembrane beta-strands and five surface-exposed loops L1-L5. Hybrid Pla-OmpT proteins were created by substituting each of the loops between Pla and OmpT. Analysis of the hybrid molecules suggested a critical role of L3 and L4 in the substrate specificity of Pla towards plasminogen and alpha2-antiplasmin. Substitution analysis at 25 surface-located residues showed the importance of the conserved residues H101, H208, D84, D86, D206 and S99 for the proteolytic activity of Pla-expressing recombinant E. coli. The mature alpha-Pla of 292 amino acids was processed into beta-Pla by an autoprocessing cleavage at residue K262, and residues important for the self-recognition of Pla were identified. Prevention of autoprocessing of Pla, however, had no detectable effect on plasminogen activation or cleavage of alpha2-antiplasmin. Cleavage of alpha2-antiplasmin and plasminogen activation were influenced by residue R211 in L4 as well as by unidentified residues in L3. OmpT, which is not associated with invasive bacterial disease, was converted into a Pla-like protease by deleting residues D214 and P215, by substituting residue K217 for R217 in L4 of OmpT and also by substituting the entire L3 with that from Pla. This simple modification of the surface loops and the substrate specificity of OmpT exemplifies the evolution of a housekeeping protein into a virulence factor by subtle mutations at critical protein regions. We propose that inactivation of alpha2-antiplasmin by Pla of Y. pestis promotes uncontrolled proteolysis and contributes to the invasive character of plague.  相似文献   

12.
Hydrolysis of plasminogen permits obtaining its nine fragments. The method of differential scanning microcalorimetry reveals seven domains in plasminogen, and the affinity chromatography--three lysin- and three arginyl-binding sites. The lysin-binding sites of domains (Kringles) K1 and K4 differ in ligand specificity. Benzamidine-binding sites of domain K5 and of plasmin light chain are simultaneously arginine-binding ones. The third arginyl-binding site differing from the benzamidine-binding one is found in fragment K1-3. In the plasminogen-fibrin interaction only lysin-binding sites of plasminogen take part; in the plasminogen fragments-fibrinogen fragments interaction both types of plasminogen sites participate. The heavy chain of plasmin interacts with the E-fragment of fibrinogen by the lysin-binding sites, and the light chain of plasmin interacts with D-fragment of fibrinogen by arginyl-binding sites. Sites complementary to arginyl binding sites of plasminogen are located on the DH-fragment and sites of interaction with lysin- and arginyl-binding sites--on the DL-fragment. The plasmin-fibrin interaction mediated by sites of the first four cringles is not associated with changes in the catalytic function of the active centre. Interaction of Lys-plasminogen with fibrin accelerates polymerization of the latter. The effect of Lys-plasminogen is conditioned by the lysin-binding sites. Glu-plasminogen has no effect on the polymerization process.  相似文献   

13.
Plasminogen binding to cell surfaces results in enhanced plasminogen activation, localization of the proteolytic activity of plasmin on cell surfaces, and protection of plasmin from alpha 2-antiplasmin. We sought to characterize candidate plasminogen binding sites on nucleated cells, using the U937 monocytoid cell as a model, specifically focusing on the role of cell-surface proteins with appropriately placed lysine residues as candidate plasminogen receptors. Lysine derivatives with free alpha-carboxyl groups and peptides with carboxy-terminal lysyl residues were effective inhibitors of plasminogen binding to the cells. One of the peptides, representing the carboxy-terminal 19 amino acids of alpha 2-antiplasmin, was approximately 5-fold more effective than others with carboxy-terminal lysines. Thus, in addition to a carboxy-terminal lysyl residue, other structural features of the cell-surface proteins may influence their affinity for plasminogen. Affinity chromatography has been used to isolate candidate plasminogen receptors from U937 cells. A major protein of Mr 54,000 was recovered and identified as alpha-enolase by immunochemical and functional criteria. alpha-Enolase was present on the cell surface and was capable of binding plasminogen in ligand blotting analyses. Plasminogen binding activity of a molecular weight similar to alpha-enolase also was present in a variety of other cell types. Carboxypeptidase B treatment of alpha-enolase abolished its ability to bind plasminogen, consistent with the presence of a C-terminal lysyl residue. Thus, cell-surface proteins with carboxy-terminal lysyl residues appear to function as plasminogen binding sites, and alpha-enolase has been identified as a prominent representative of this class of receptors.  相似文献   

14.
15.
The rate of activation of plasminogen by tissue-type plasminogen activator is greatly increased by fibrin, but not by fibrinogen. A possible explanation for this phenomenon could be that conformational changes take place during the transformation of fibrinogen to fibrin which lead to exposure of sites involved in the accelerated plasmin formation. This is also supported by our recent observation that some enzymatically prepared fragments of fibrinogen and fibrin (D EGTA, D-dimer, Y) and also CNBr fragment 2 from fibrinogen have this property. CNBr fragment 2 consists of amino acid residues A alpha (148-207), B beta (191-224) + (225-242) + (243-305) and gamma 95-265, kept together by disulphide bonds. In order to study the localization of a stimulating site within this structure we purified the chain remnants of CNBr fragment 2 after reduction and carboxymethylation, and found that only A alpha 148-207 was stimulating. This was further confirmed by digesting pure A alpha-chains with CNBr and purifying the resulting A alpha-chain fragments. CNBr digests of B beta- and gamma-chains were not stimulatory. The A alpha-chain remnant (residues 111-197) in D EGTA and D-dimer also comprise the major part (residues A alpha 148-197) of the CNBr A alpha-chain fragment. We conclude that a site capable of accelerating the plasminogen activation by tissue-type plasminogen activator preexists in fibrinogen, that this site becomes exposed upon fibrin formation or disruption of fibrinogen by plasmin or CNBr and that this site is within the stretch A alpha 148-197, which is retained in the A alpha-chain remnants of fibrinogen degradation products.  相似文献   

16.
Streptokinase (SK) and staphylokinase form cofactor-enzyme complexes that promote the degradation of fibrin thrombi by activating human plasminogen. The unique abilities of streptokinase to nonproteolytically activate plasminogen or to alter the interactions of plasmin with substrates and inhibitors may be the result of high affinity binding mediated by the streptokinase beta-domain. To examine this hypothesis, a chimeric streptokinase, SKbetaswap, was created by swapping the SK beta-domain with the homologous beta-domain of Streptococcus uberis Pg activator (SUPA or PauA, SK uberis), a streptokinase that cannot activate human plasminogen. SKbetaswap formed a tight complex with microplasminogen with an affinity comparable with streptokinase. The SKbetaswap-plasmin complex also activated human plasminogen with catalytic efficiencies (k(cat)/K(m) = 16.8 versus 15.2 microm(-1) min(-1)) comparable with streptokinase. However, SKbetaswap was incapable of nonproteolytic active site generation and activated plasminogen by a staphylokinase mechanism. When compared with streptokinase complexes, SKbetaswap-plasmin and SKbetaswap-microplasmin complexes had altered affinities for low molecular weight substrates. The SKbetaswap-plasmin complex also was less resistant than the streptokinase-plasmin complex to inhibition by alpha(2)-antiplasmin and was readily inhibited by soybean trypsin inhibitor. Thus, in addition to mediating high affinity binding to plasmin(ogen), the streptokinase beta-domain is required for nonproteolytic active site generation and specifically modulates the interactions of the complex with substrates and inhibitors.  相似文献   

17.
The therapeutic properties of plasminogen activators are dictated by their mechanism of action. Unlike staphylokinase, a single domain protein, streptokinase, a 3-domain (alpha, beta, and gamma) molecule, nonproteolytically activates human (h)-plasminogen and protects plasmin from inactivation by alpha(2)-antiplasmin. Because a streptokinase-like mechanism was hypothesized to require the streptokinase gamma-domain, we examined the mechanism of action of a novel two-domain (alpha,beta) Streptococcus uberis plasminogen activator (SUPA). Under conditions that quench trace plasmin, SUPA nonproteolytically generated an active site in bovine (b)-plasminogen. SUPA also competitively inhibited the inactivation of plasmin by alpha(2)-antiplasmin. Still, the lag phase in active site generation and plasminogen activation by SUPA was at least 5-fold longer than that of streptokinase. Recombinant streptokinase gamma-domain bound to the b-plasminogen.SUPA complex and significantly reduced these lag phases. The SUPA-b.plasmin complex activated b-plasminogen with kinetic parameters comparable to those of streptokinase for h-plasminogen. The SUPA-b.plasmin complex also activated h-plasminogen but with a lower k(cat) (25-fold) and k(cat)/K(m) (7.9-fold) than SK. We conclude that a gamma-domain is not required for a streptokinase-like activation of b-plasminogen. However, the streptokinase gamma-domain enhances the rates of active site formation in b-plasminogen and this enhancing effect may be required for efficient activation of plasminogen from other species.  相似文献   

18.
alpha 2-antiplasmin (alpha 2-AP) exerts its inhibitory effect on fibrinolysis by rapidly inhibiting the plasmin evolved; in addition, it has been suggested that interference with the binding of plasminogen to fibrin, a function shared with histidine-rich glycoprotein (HRGP), may also be significant in inhibition of fibrinolysis. To elucidate if plasminogen binding by these two alpha 2-globulins may decrease the generation of plasmin by tissue-type plasminogen activator (t-PA) at the surface of fibrin, a system mimicking the fibrin/plasma interface was used. Attempts were made to differentiate the plasminogen binding from the plasmin inhibitory function of alpha 2-AP. The activation of human Glu-plasminogen (native plasminogen with NH2-terminal glutamic acid) by fibrin-bound t-PA was performed in a plasma environment using either normal plasma, alpha 2-AP- or HRGP-depleted plasmas supplemented with increasing amounts of the lacking protein, or in a reconstituted system with purified plasminogen and various concentrations of alpha 2-AP and HRGP. The activation of Glu-plasminogen in alpha 2-AP-depleted plasma containing a normal concentration of HRGP produced a time-dependent increase in the generation of plasmin. The addition of 1 microM-alpha 2-AP to this plasma prevented the formation of Lys-derivatives and produced a marked decrease (42%) in the number of plasminogen-binding sites. In contrast, the addition of 1.5 microM-HRGP to HRGP-depleted plasma containing a normal amount of alpha 2-AP produced only a modest (17%) decrease in the amount of plasmin(ogen) bound. Moreover, in a purified system the amount of plasminogen-binding sites and thereby of plasmin generated at the surface of fibrin in the presence of both alpha-2 globulins was similar to the amount generated in the presence of alpha 2-AP alone. These results indicate clearly that the formation of reversible complexes between plasminogen and alpha 2-AP does not interfere with the binding and activation of plasminogen at the fibrin surface. In contrast, the inhibition of plasmin by alpha 2-AP decreases importantly the number of plasminogen-binding sites (carboxyl-terminal lysines) and inhibits thereby the accelerated phase of fibrinolysis. It can be concluded that interference of the binding of plasminogen to fibrin by alpha 2-AP during plasminogen activation, does not play a significant role in inhibition of fibrinolysis, and that the plasminogen-binding effect of HRGP, if any, is obscured by the important inhibitory effect of alpha 2-AP.  相似文献   

19.
On the mechanism of fibrin-specific plasminogen activation by staphylokinase   总被引:10,自引:0,他引:10  
The mechanism of plasminogen activation by recombinant staphylokinase was studied both in the absence and in the presence of fibrin, in purified systems, and in human plasma. Staphylokinase, like streptokinase, forms a stoichiometric complex with plasminogen that activates plasminogen following Michaelis-Menten kinetics with Km = 7.0 microM and k2 = 1.5 s-1. In purified systems, alpha 2-antiplasmin inhibits the plasminogen-staphylokinase complex with k1(app) = 2.7 +/- 0.30 x 10(6) M-1 s-1 (mean +/- S.D., n = 12), but not the plasminogen-streptokinase complex. Addition of 6-aminohexanoic acid induces a concentration-dependent reduction of k1(app) to 2.0 +/- 0.17 x 10(4) M-1 s-1 (mean +/- S.D., n = 5) at concentrations greater than or equal to 30 mM, with a 50% reduction at a 6-aminohexanoic acid concentration of 60 microM. Staphylokinase does not bind to fibrin, and fibrin stimulates the initial rate of plasminogen activation by staphylokinase only 4-fold. Staphylokinase induces a dose-dependent lysis of a 0.12-ml 125I-fibrin-labeled human plasma clot submersed in 0.5 ml of citrated human plasma; 50% lysis in 2 h is obtained with 17 nM staphylokinase and is associated with only 5% plasma fibrinogen degradation. Corresponding values for streptokinase are 68 nM and more than 90% fibrinogen degradation. In the absence of a fibrin clot, 50% fibrinogen degradation in human plasma in 2 h requires 790 nM staphylokinase, but only 4.4 nM streptokinase. These results suggest the following mechanism for relatively fibrin-specific clot lysis with staphylokinase in a plasma milieu. In plasma in the absence of fibrin, the plasminogen-staphylokinase complex is rapidly neutralized by alpha 2-antiplasmin, thus preventing systemic plasminogen activation. In the presence of fibrin, the lysine-binding sites of the plasminogen-staphylokinase complex are occupied and inhibition by alpha 2-antiplasmin is retarded, thus allowing preferential plasminogen activation at the fibrin surface.  相似文献   

20.
Brain spectrin alpha and beta chains bind 45Ca2+, as shown by the calcium overlay method. Flow dialysis measurements revealed eight high affinity binding sites/tetramer that comprise two binding components (determined by nonlinear regression analysis). The first component has one or two sites (kd = 2-30 x 10(-8) M), depending on the ionic strength of the binding buffer, with the remaining high affinity sites in the second component (kd = 1-3 x 10(-6) M). In addition, there is a variable, low affinity binding component (n = 100-400, kd = 1-2 x 10(-4) M). Magnesium inhibits calcium binding to the low affinity sites with a K1 = 1.21 mM. Proteolytic fragments from trypsin or chymotrypsin digests of brain spectrin bind 45Ca2+ if they include alpha domain IV, alpha domain III, or the amino-terminal half of the beta chain (but more than 25 kDa from the amino-terminal). These data suggest that calcium ions bind with high affinity to the putative EF-hands in alpha domain IV and to one site in the amino-terminal half of the beta chain that is associated with alpha domain IV in the native dimer. The localization is consistent with a direct calcium modulation of the spectrin-actin-protein 4.1 interaction. In addition, there appears to be one high affinity site near the hypersensitive region of alpha brain spectrin. All four proposed binding sites occur near probable calmodulin-binding or calcium-dependent protease cleavage sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号