首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochemical localization of tartrate-resistant acid phosphatase (TRAP), tartrate-sensitive acid phosphatases (TSAP), alkaline phosphatase, and nonspecific esterase was used to characterize perivascular cells within cartilage canals. In the distal femoral epiphyses of 5- to 7-day-old mice, three stages of canal development can be distinguished, and at each developmental stage different perivascular cells were present with morphological characteristics of degradative cells. Vacuolated cells resembling macrophages, fibroblastic cells, and chondroclasts were present adjacent to the matrix in superficial, intermediate, and deep canals, respectively. In order to characterize these perivascular cells cytochemically, nonspecific esterase and TSAP staining was used to identify macrophages, alkaline phosphatase staining was used to identify fibroblastic cells, and TRAP staining was used to identify chondroclasts. There were no cells present in the canals at any developmental stage that were positive for TSAP or strongly positive for nonspecific esterase, placing doubt on the identity of the vacuolated cells as macrophages. Alkaline phosphatase-positive perivascular cells were present in the intermediate and deep canals adjacent to matrix containing alkaline phosphatase-positive chondrocytes. These alkaline phosphatase-positive cells were found in the same location within canals as the fibroblastic cells. Tartrate-resistant acid phosphatase was localized in chondroclasts at the tips of deep canals but was not confined exclusively to chondroclasts. Except for the very early stage of canal development prior to chondrocyte hypertrophy, TRAP-positive cells were present at the tips of superficial and intermediate canals as well as at the tips of the deep canals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Preparations of lactobacilli are often used as dietary supplements to improve the growth and efficiency in utilizing food of animals of commercial value. We tested in an experimental model whether the effects of lactobacilli on growth of and food utilization by animals may be due to alteration of the activities of absorptive enzymes in the small bowel. Germfree mice housed in isolators under tightly controlled conditions were monoassociated with one of four strains of indigenous Lactobacillus spp. From 1 to 5 weeks later, the activity of alkaline phosphatase was assayed in homogenates of segments of the upper small intestines of the associated animals and of matched germfree controls. The specific activity of the enzyme was the same in the mice in the two groups. In other experiments, epithelial cells were isolated from the upper small intestines of mice associated with eight Lactobacillus strains (octa-associated) and from those of matched germfree mice and assayed for alkaline phosphatase, phosphodiesterase, and thymidine kinase activities. The epithelial cells were harvested sequentially from the tips of the villi toward the crypts of Lieberkühn of the intestines. In all preparations, mice of both types yielded an equivalent mass (wet weight) of cells. The protein content of the cells reflected the mass. The activities of the microvillous membrane enzymes alkaline phosphatase and phosphodiesterase and the cytosol enzyme thymidine kinase were the same whether or not the animals contained the bacteria. Therefore, any effects on animal growth and food utilization observed when lactobacilli are used as dietary supplements may not be due to a direct alteration by the bacteria of the absorptive enzymes of the host animal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Preparations of lactobacilli are often used as dietary supplements to improve the growth and efficiency in utilizing food of animals of commercial value. We tested in an experimental model whether the effects of lactobacilli on growth of and food utilization by animals may be due to alteration of the activities of absorptive enzymes in the small bowel. Germfree mice housed in isolators under tightly controlled conditions were monoassociated with one of four strains of indigenous Lactobacillus spp. From 1 to 5 weeks later, the activity of alkaline phosphatase was assayed in homogenates of segments of the upper small intestines of the associated animals and of matched germfree controls. The specific activity of the enzyme was the same in the mice in the two groups. In other experiments, epithelial cells were isolated from the upper small intestines of mice associated with eight Lactobacillus strains (octa-associated) and from those of matched germfree mice and assayed for alkaline phosphatase, phosphodiesterase, and thymidine kinase activities. The epithelial cells were harvested sequentially from the tips of the villi toward the crypts of Lieberkühn of the intestines. In all preparations, mice of both types yielded an equivalent mass (wet weight) of cells. The protein content of the cells reflected the mass. The activities of the microvillous membrane enzymes alkaline phosphatase and phosphodiesterase and the cytosol enzyme thymidine kinase were the same whether or not the animals contained the bacteria. Therefore, any effects on animal growth and food utilization observed when lactobacilli are used as dietary supplements may not be due to a direct alteration by the bacteria of the absorptive enzymes of the host animal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The serine protease thrombin stimulates proliferation in osteoblasts, but decreases alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation. Three thrombin receptors have been identified, protease activated receptor (PAR)-1, PAR-3 and PAR-4; we have previously demonstrated that mouse osteoblasts express PAR-1 and PAR-4. The effect of thrombin on osteoblast proliferation and differentiation was studied to determine which of the thrombin receptors is responsible for the primary effects of thrombin. Primary mouse calvarial osteoblasts from PAR-1-null and wild-type mice, and synthetic peptides that specifically activate PAR-1 (TFFLR-NH2) and PAR-4 (AYPGKF-NH2) were used. Both the PAR-1-activating peptide and thrombin stimulated incorporation of 5-bromo-2'-deoxyuridine (two to four-fold, P < 0.001) and reduced alkaline phosphatase activity (approximately three-fold, P < 0.05) in cells from wild-type mice. The PAR-4-activating peptide, however, had no effect on either alkaline phosphatase activity or proliferation in these cells. Neither thrombin nor PAR-4-activating peptide was able to affect osteoblast proliferation or alkaline phosphatase activity in cells isolated from PAR-1-null mice. The results demonstrate that thrombin stimulates proliferation and inhibits differentiation of osteoblasts through activation of PAR-1. No other thrombin receptor appears to be involved in these effects.  相似文献   

5.
Summary A new technique of quantitative histochemistry has been developed to study the cellular composition of the follicle-associated epithelium of the mouse Peyer's patch. This technique involves applying naphthol AS-BI phosphate to the surface of intact tissue where it is hydrolysed by alkaline phosphatase present in the luminal membrane of the epithelial cells. Naphthol AS-BI produced by this reaction is then coupled to Fast Red TR diazonium salt at the site of hydrolysis. M cells present in the epithelium contain little alkaline phosphatase activity and, therefore, remain white. Treatment with Alcian Blue is finally used to label goblet cells. Subsequent quantitative analysis of alkaline phosphatase-rich cells is carried out by scanning microdensitometry. Using this technique it is possible to detect two populations of alkaline phosphatase-containing cells in mice reared in a normal animal house environment.These results are discussed in relation to possible interactions taking place between enteric antigens and the gut-associated lymphoid tissue which could reduce the ability of follicle-associated enterocytes to express alkaline phosphatase.  相似文献   

6.
The presence and activity of alkaline phosphatase in SAOS-2 and TE-85 human osteosarcoma cells grown in culture were examined at the ultrastructural level. A monoclonal antibody raised against purified human bone osteosarcoma alkaline phosphatase was used to localize the enzyme in cultures of the osteosarcoma cells. Similar cultures were analyzed for alkaline phosphatase activity using an enzyme cytochemical method with cerium as the capture agent. Alkaline phosphatase was immunolocalized at the light microscopic level in an osteogenic sarcoma and ultrastructurally on the SAOS-2 cell membrane and the enclosing membrane of extracellular vesicular structures close to the cells. In contrast, the TE-85 cells were characterized by the absence of all but a few traces of immunolabeling at the cell surface. Enzyme cytochemical studies revealed strong alkaline phosphatase activity on the outer surface of the SAOS-2 cell membrane. Much lower enzyme activity was observed in the TE-85 cells. The results support biochemical data from previous studies and confirm that SAOS-2 cells have a significantly greater concentration of alkaline phosphatase at the plasma membrane.  相似文献   

7.
Plasma membrane localization of alkaline phosphatase in HeLa cells.   总被引:3,自引:0,他引:3  
The localization of alkaline phosphatase in HeLa cells was examined by electron microscopic histochemistry and subcellular fractionation techniques. Two monophenotypic sublines of HeLa cells which respectively produced Regan and non-Regan isoenzymes of alkaline phosphatase were used for this study. The electron microscopic histochemical results showed that in both sublines the major location of alkaline phosphatase is in the plasma membrane. The enzyme reaction was occasionally observed in some of the dense body lysosomes. This result was supported by data obtained from a subcellular fractionation study which showed that the microsomal fraction rich in plasma membrane fragments had the highest activity of alkaline phosphatase. The distribution of this enzyme among the subcellular fractions closely paralleled that of the 5'-nucleotidase, a plasma membrane marker enzyme. Characterization of the alkaline phosphatase present in each subcellular fraction showed identical enzyme properties, which suggests that a single isoenzyme exists among fractions obtained from each cell line. The results, therefore, confirm the reports suggesting that plasma membrane is the major site of alkaline phosphatase localization in HeLa cells. The absence of any enzyme reaction in the perimitochondrial space in these cultured tumor cells also indicates that the mitochondrial localization of the Regan isoenzyme reported in ovarian cancer may not be a common phenomenon in Regan-producing cancer cells.  相似文献   

8.
Swiss albino mice displayed the highest activity of alkaline phosphatase at 4-6 weeks with a precipitous decline by 18 weeks of age to a value seen in the mature animal. Circulating activity of alkaline phosphatase was significantly higher in the rat than the mouse in the fed state. With fasting, enzyme activity declined in the rat yet increased in the mouse. The net result was significantly higher plasma alkaline phosphatase activity in the mouse than the rat after the 48 hr fast. L-Phenylalanine inhibition of plasma alkaline phosphatase was greater in plasma from the rat than the mouse in the fed state. Yet in the fed condition, L-homoarginine and L-p-bromotetramisole inhibited alkaline phosphatase activity in plasma from mice to a greater extent than in rats. Heat inactivation as well as urea denaturation of alkaline phosphatase was significantly faster with plasma of the mouse than the rat in the fed state. Thus, it appears that the alkaline phosphatase isoenzyme of skeletal origin contributes a greater proportion of the circulating activity in the fed Swiss albino mouse than occurs in the Sprague-Dawley rat in which the intestinal isoenzyme plays a greater role in the fed condition.  相似文献   

9.
Dual parameter flow cytoenzymology was used to detect biochemical differentiation of embryonal carcinoma cells, the undifferentiated, multipotent stem cells of teratocarcinomas. With the use of fluorogenic substrates, two enzyme systems, alkaline phosphatase (EC 3.1.3.1.) and carboxyl esterase (EC 3.1.1.), were studied. Embryonal carcinoma cells passaged in vitro for several years retained high alkaline phosphatase activities similar to those of embryonal carcinoma cells in embryoid bodies grown in vivo. Similar to the embryonal carcinoma cells in vivo, the in vitro embryonal carcinoma cells were capable of giving rise to progeny with greatly decreased levels of alkaline phosphatase. The embryonal carcinoma cell alkaline phosphatase was inhibited by l-p-bromotetramisole, suggesting a relationship between this enzyme and somatic, nonintestinal alkaline phosphatase isoenzymes. Determinations of esterase activities in viable teratocarcinoma cells showed that prior to any evidence of morphologic differentiation, the embryonal carcinoma cells are quite heterogeneous with regard to esterase activities.  相似文献   

10.
11.
Effect of inorganic lead on the primordial germ cells in the mouse embryo   总被引:1,自引:0,他引:1  
M Wide  R D'Argy 《Teratology》1986,34(2):207-212
Embryos from mice exposed to lead chloride (20 micrograms/gm body weight) by a single intravenous injection on day 8 of gestation were examined regarding the number and distribution of their primordial germ cells on 4 consecutive days of development. The cells, visualized by histochemical staining for alkaline phosphatase, showed a normal body distribution but were significantly fewer at all four stages compared with those of control embryos of corresponding age. Furthermore, the staining of the primordial germ cells was much weaker in the embryos from the lead-treated dams than in those from control dams, suggesting that the lead had interfered with the production or activity of alkaline phosphatase. It is assumed that these effects could have contributed to the fertility reduction previously observed in female offspring of mice exposed to lead at an early stage of pregnancy.  相似文献   

12.
This paper presents evidence that a protein characteristic of differentiated liver cells, liver alkaline phosphatase, is synthesized by the Chang liver cell line. Liver alkaline phosphatase was demonstrated by immumochemical assay, 32P-labeling and polyacrylamide gel electrophoresis, immunofluorescence microscopy, and the fluorescence-activated cell sorter. The synthesis of the liver enzyme by the Chang liver cells is interpreted to indicate fidelity of the Chang cells to their origin from human liver tissue. Chang liver cells also synthesize a phosphatase which is similar if not indentical to the placental alkaline phosphatase. Since a placental-type alkaline phosphatase has been observed in a number of non-trophoblastic cell lines and also in some neoplasms, it does not seem reliable as an index of the origins of the cell line. Because of the claims that Chang liver cells are actually HeLa cells, HeLa cells were studied in tandem with the Chang cells. The results showed that the HeLa cells do not make the liver type phosphatase. The data are discussed in relation to the question of HeLa cell contamination of the Chang cell line and the validity of criteria normally used to identify cell lines.  相似文献   

13.
14.
Alkaline phosphatase activity in human placental cells transformed by a tsA mutant of simian virus 40 (SV40) can be greatly induced by growing these cells at 40 degrees C, the temperature at which the tsA transformants regain their nontransformed phenotype. The induction of alkaline phosphatase in these cells requires the synthesis of both RNA and protein. The induced alkaline phosphatase from a SV40 tsA30 mutant-transformed term placental cell line (TPA30-1) was purified, characterized, and compared with alkaline phosphatase from term placenta and first trimester placenta. The form of alkaline phosphatase found in TPA30-1 cells differs from the phosphatase of term placenta in physiochemical and immunological properties. The TPA30-1 phosphatase is, however, indistinguishable from the alkaline phosphatase of human first trimester placenta by several criteria, including electrophoretic mobility, apparent molecular weight (Mr = 165,000), size of monomeric subunit (Mr = 77,000), heat lability, and sensitivity to inhibition by amino acids and EDTA. In addition, alkaline phosphatase from both TPA30-1 cells and first trimester placenta can be inactivated by antiserum to liver alkaline phosphatase but not by antiserum to term placental alkaline phosphatase. The induction of first trimester phosphatase in cells derived from term placenta provides a system for the study of alkaline phosphatase gene regulation in human placenta.  相似文献   

15.
1. Liver and bone alkaline phosphatase isoenzymes were solubilized with the zwitterionic detergent sulphobetaine 14, and purified to homogeneity by using a monoclonal antibody previously raised against a partially-purified preparation of the liver isoenzyme. Both purified isoenzymes had a specific activity in the range 1100-1400 mumol/min per mg of protein with a subunit Mr of 80,000 determined by SDS/polyacrylamide gel electrophoresis. Butanol extraction instead of detergent solubilization, before immunoaffinity purification of the liver enzyme, resulted in the same specific activity and subunit Mr. The native Mr of the sulphobetaine 14-solubilized enzyme was consistent with the enzyme being a dimer of two identical subunits and was higher than that of the butanol-extracted enzyme, presumably due to the binding of the detergent micelle. 2. Pure bone and liver alkaline phosphatase were used to raise further antibodies to the two isoenzymes. Altogether, 27 antibody-producing cell lines were cloned from 12 mice. Several of these antibodies showed a greater than 2-fold preference for bone alkaline phosphatase in the binding assay used for screening. No antibodies showing a preference for liver alkaline phosphatase were successfully cloned. None of the antibodies showed significant cross-reaction with placental or intestinal alkaline phosphatase. Epitope analysis of the 27 antibodies using liver alkaline phosphatase as antigen gave rise to six groupings, with four antibodies unclassified. The six major epitope groups were also observed using bone alkaline phosphatase as antigen. 3. Serum from patients with cholestasis contains soluble and particulate forms of alkaline phosphatase. The soluble serum enzyme had the same size and charge as butanol-extracted liver enzyme on native polyacrylamide-gel electrophoresis. Cellulose acetate electrophoresis separated the soluble and particulate serum alkaline phosphatases as slow- and fast-moving forms respectively. In the presence of sulphobetaine 14 all the serum enzyme migrated as the slow-moving form on cellulose acetate electrophoresis. Monoclonal anti-(alkaline phosphatase) immunoadsorbents did not bind the particulate form of alkaline phosphatase in cholestatic serum but bound the soluble form. In the presence of sulphobetaine 14 all the cholestatic serum alkaline phosphatase bound to the immunoadsorbents. 4. The electrophoretic and immunological data are consistent with both particulate and soluble forms of alkaline phosphatase in cholestatic serum being derived from the hepatocyte membrane.  相似文献   

16.
No statistically significant difference in alkaline phosphatase levels was demonstrated in animals injected with the FBJ virus. However, there was a significant increase associated with the development of osteosarcomas in response to the iv injection of 1.0 uCi 90 Sr/g body weight into 11-18-mo-old Anl:CFl females. It was proposed that alkaline phosphatase determinations can be used as well as roentenographic analysis to detect 90Sr-induced tumors in mice.  相似文献   

17.
Treatment of immature mice with both follicle-stimulating hormone and human chorionic gonadotrophin in vivo resulted in large increases in the specific activities of ovarian alkaline phosphatase and alkaline nucleotidase. The specific activities of other ovarian enzymes studied were not altered by gonadotrophin treatment. A simultaneous change in the Michaelis constant of ovarian alkaline phosphatase accompanied the increase in specific activity. These changes commenced 6-8h after injection of human chorionic gonadotrophin plus follicle-stimulating hormone. Injection of human chorionic gonadotrophin induced the change in Michaelis constant and increased ovarian alkaline phosphatase activity. Treatment with follicle-stimulating hormone had no effect on ovarian alkaline phosphatase. However, follicle-stimulating hormone synergistically augmented the response to human chorionic gonadotrophin. A latent period of about 24h elapsed before this augmentation was expressed. Augmentation of ovarian alkaline phosphatase was directly related to the dose of follicle-stimulating hormone at a fixed dose of chorionic gonadotrophin. No response of ovarian alkaline phosphatase was observed after treatment of immature mice in vivo with oestrogens, progesterone, growth hormone or prolactin. Unlike chorionic gonadotrophin, sheep luteinizing hormone over a wide dose range induced no response within 24h. However, a response in ovarian alkaline phosphatase was observed when sheep luteinizing hormone was administered in combination with follicle-stimulating hormone. The specific activity and K(m) of ovarian alkaline phosphatase increased during normal maturation. The Michaelis constant ceased to increase as sexual maturity was reached. The changes in alkaline phosphatase activity were of a similar magnitude to those induced by gonadotrophin treatment. It is concluded that the changes induced acutely by treatment in vivo with unphysiological doses of gonadotrophins occur in the maturing mouse under the influence of endogenous, homologous gonadotrophins at physiological concentrations.  相似文献   

18.
Ferritin-conjugated specific antibodies have been used to localize beta-galactosidase and both the monomer and active dimer of alkaline phosphatase in frozen thin sections of cells of Escherichia coli O8 strain F515. The even distribution of the ferritin marker throughout cells that had been induced for beta-galactosidase synthesis, frozen, sectioned, and exposed to ferritin-anti-beta-galactosidase conjugate showed that this enzyme was present throughout the cytoplasm of these cells. Frozen thin sections of cells that had been derepressed for the synthesis of alkaline phosphatase were exposed to both ferritin-anti-alkaline phosphatase monomer and ferritin-anti-alkaline phosphatase dimer conjugates, and the ferritin markers showed a peripheral distribution of both the monomer and the dimer of this enzyme. This indicates that alkaline phosphatase is present only in the peripheral regions of the cell and argues against the existence of a cytoplasmic pool of inactive monomers of this enzyme. This peripheral location of both the monomers and dimers of alkaline phosphatase supports the developing concensus that this enzyme is, like other wall-associated enzymes, synthesized in association with the cytoplasmic membrane and vectorially transported to the periplasmic area, where it assumes its tertiary and quaternary structure and acquires its enzymatic activity.  相似文献   

19.
Adult albino mice were bleed through the hearts by cardiac puncture under Nembutal anesthetic. 0.3 ml of blood was withdrawn form every animal. The retinae were then studied on a timed basis with succinic dehydrogenase histochemistry and alkaline phosphatase histochemistry. In control retinae, high SDH activities were localized in the inner segments, outer plexiform, inner plexiform, and ganglion cells layers and high alkaline phosphatase activities were localized in the ganglion cell layers and the vessels of the plexiform layers. Decrease in the enzymatic activities of both SDH and alkaline phosphatase in these layers were most evident 5h after bleeding. 9 to 24 h after bleeding, a compensatory increase was detected. 48 to 72 h after, the enzymatic activities decreased again. Reperfusion of experimental animals with 5% dextrose would increase the retinal enzymatic activities back to normal, even if the reperfusion was carried out as late as 48 h after bleeding.  相似文献   

20.
Summary Alkaline phosphatase in the brush border of areas of intestinal metaplasia of human stomach was studied cytochemically. All absorptive cells in the upper part of the villi of the duodenum had strong alkaline phosphatase activity but, in areas of intestinal metaplasia, the metaplastic glands consisted of alkaline phosphatase-positive and negative absorptive cells. Alkaline phosphatase activity was found in tall dense microvilli of absorptive cells in areas of intestinal metaplasia and in the duodenum. However, in some areas of metaplastic epithelium, the activity was very weak in some tall dense microvilli of absorptive cells but strong in those of neighbouring absorptive cells. No alkaline phosphatase activity was found in short sparse microvilli of absorptive cells in areas of intestinal metaplasia. The difference in alkaline phosphatase activity in microvilli of different cells in areas of intestinal metaplasia, which is not seen in the duodenum, indicates abnormal morphological and enzymatic differentiation in intestinal metaplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号