首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous pararetroviruses (EPRVs) represent a new class of dispersed repetitive DNA in plants. The genomes of many Nicotiana species and other solanaceous plants are rich in EPRVs. Distinct EPRV families are present in N. sylvestris ( Ns ) and in N. tomentosiformis ( Nto ), the two diploid progenitors of allotetraploid N. tabacum . Nicotiana EPRVs represent an interesting type of repetitive sequence to analyse in polyploids because of their potential impact on plant fitness and the epigenetic architecture of plant genomes. The Ns EPRV family appears identical in N. sylvestris and N. tabacum , indicating little change has occurred in either species since polyploid formation. By contrast, the Nto EPRV family is larger in N. tomentosiformis than in N. tabacum , suggesting either preferential elimination from the polyploid genome or specific accumulation in the diploid genome following polyploidization. The lability of Nto EPRVs might be enhanced by a frequent association with gypsy retrotransposons. Although some EPRVs are probably benign, others are potentially pathogenic or, conversely, determinants of virus resistance. Normally quiescent EPRVs can be reactivated and cause symptoms of infection in hybrids of species that differ in their EPRV content. EPRVs that furnish immunity to the free virus exemplify the selective value of so-called 'junk' DNA. Variation in the abundance and distribution of EPRVs among related species can be useful in taxonomic and evolutionary studies.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 627–638.  相似文献   

2.
Nicotiana tabacum (tobacco) is an allotetraploid derived from ancestors of the modern diploids, N. sylvestris and N. tomentosiformis. We identified and characterized two distinct families of 5S ribosomal DNA (rDNA) in N. tabacum; one family had an average 431 bp unit length and the other a 646 bp unit length. In the diploid species, N. sylvestris and N. tomentosiformis, the 5S rDNA unit lengths are 431 bp and 644 bp respectively. The non-coding spacer sequence of the short unit in tobacco had high sequence homology to the spacer of N. sylvestris5S rDNA, while the longer spacer of tobacco had high homology with the 5S spacer of N. tomentosiformis. This suggests that the two 5S families in tobacco have their origin in the diploid ancestors. The longer spacer sequence had a GC rich sub-region (called the T-genome sub-region) that was absent in the short spacer. Pulsed field gel analysis and fluorescent in situ hybridization to tobacco metaphase chromosomes showed that the two families of 5S rDNA units are spatially separate at two chromosomal loci, on chromosomes S8 (short family) and T8 (long family). The repeat copy number at each chromosomal locus showed heterogeneity between different tobacco cultivars, with a tendency for a decrease in the copy number of one family to be compensated by an increase in the copy number of the second family. Sequence analysis reveals there is as much diversity in 5S family units within the diploid species as there is within the T and S-genome 5S family units respectively, suggesting 5S diversification within each family had occurred before tobacco speciation. There is no evidence of interlocus homogenization of the two 5S families in tobacco. This is therefore substantially different to 18-26S rDNA where interlocus gene conversion has substantially influenced most sequences of S and T genome origin; possible reasons are discussed.  相似文献   

3.
Origin and rearrangement of ribosomal DNA repeats in natural allotetraploid Nicotiana tabacum are described. Comparative sequence analysis of the intergenic spacer (IGS) regions of Nicotiana tomentosiformis (the paternal diploid progenitor) and Nicotiana sylvestris (the maternal diploid progenitor) showed species-specific molecular features. These markers allowed us to trace the molecular evolution of parental rDNA in the allopolyploid genome of N. tabacum; at least the majority of tobacco rDNA repeats originated from N. tomentosiformis, which endured reconstruction of subrepeated regions in the IGS. We infer that after hybridization of the parental diploid species, rDNA with a longer IGS, donated by N. tomentosiformis, dominated over the rDNA with a shorter IGS from N. sylvestris; the latter was then eliminated from the allopolyploid genome. Thus, repeated sequences in allopolyploid genomes are targets for molecular rearrangement, demonstrating the dynamic nature of allopolyploid genomes.  相似文献   

4.
5.
Nicotiana tabacum (tobacco, 2n = 4x = 48) is a natural allotetraploid combining two ancestral genomes closely related to modern Nicotiana sylvestris and Nicotiana tomentosiformis. Here we examine the immediate consequences of allopolyploidy on genome evolution using 20 S4-generation plants derived from a single synthetic, S0 plant made by Burk in 1973 (Th37). Using molecular and cytogenetic methods we analysed 14 middle and highly repetitive sequences that together total approximately 4% of the genome. Two repeats related to endogenous geminiviruses (GRD5) and pararetroviruses (NtoEPRV), and two classes of satellite repeats (NTRS, A1/A2) were partially or completely eliminated at variable frequency (25-60%). These sequences are all from the N. tomentosiformis parent. Genomic in situ hybridization revealed additivity in chromosome numbers in two plants (2n = 48), while a third was aneuploid for an N. tomentosiformis-origin chromosome (2n = 49). Two plants had homozygous translocations between chromosomes of the S- and T-genomes. * The data demonstrate that genetic changes in synthetic tobacco were fast, targeted to the paternal N. tomentosiformis-donated genome, and some of the changes showed concordance with changes that presumably occurred during evolution of natural tobacco.  相似文献   

6.
Transposable elements can generate considerable genetic diversity. Here we examine the distribution of the Tnt1 retrotransposon family in representative species of the genus Nicotiana . We show that multiple Tnt1 insertions are found in all Nicotiana species. However, Tnt1 insertions are too polymorphic to reveal species relationships. This indicates that Tnt1 has amplified rapidly and independently after Nicotiana speciation. We compare patterns of Tnt1 insertion in allotetraploid tobacco ( N. tabacum ) with those in the diploid species that are most closely related to the progenitors of tobacco, N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). We found no evidence for Tnt1 insertion sites of N. otophora origin in tobacco. Nicotiana sylvestris has a higher Tnt1 content than N. tomentosiformis and the elements are distributed more uniformly across the genome. This is reflected in tobacco where there is a higher Tnt1 content in S-genome chromosomes. However, the total Tnt1 content of tobacco is not the sum of the two modern-day parental species. We also observed tobacco-specific Tnt1 insertions and an absence of tobacco Tnt1 insertion sites in the diploid relatives. These data indicate Tnt1 evolution subsequent to allopolyploidy. We explore the possibility that fast evolution of Tnt1 is associated with 'genomic-shock' arising out of interspecific hybridization and allopolyploidy.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 639–649.  相似文献   

7.
We used next generation sequencing to characterize and compare the genomes of the recently derived allotetraploid, Nicotiana tabacum (<200,000 years old), with its diploid progenitors, Nicotiana sylvestris (maternal, S-genome donor), and Nicotiana tomentosiformis (paternal, T-genome donor). Analysis of 14,634 repetitive DNA sequences in the genomes of the progenitor species and N. tabacum reveal all major types of retroelements found in angiosperms (genome proportions range between 17-22.5% and 2.3-3.5% for Ty3-gypsy elements and Ty1-copia elements, respectively). The diploid N. sylvestris genome exhibits evidence of recent bursts of sequence amplification and/or homogenization, whereas the genome of N. tomentosiformis lacks this signature and has considerably fewer homogenous repeats. In the derived allotetraploid N. tabacum, there is evidence of genome downsizing and sequences loss across most repeat types. This is particularly evident amongst the Ty3-gypsy retroelements in which all families identified are underrepresented in N. tabacum, as is 35S ribosomal DNA. Analysis of all repetitive DNA sequences indicates the T-genome of N. tabacum has experienced greater sequence loss than the S-genome, revealing preferential loss of paternally derived repetitive DNAs at a genome-wide level. Thus, the three genomes of N. sylvestris, N. tomentosiformis, and N. tabacum have experienced different evolutionary trajectories, with genomes that are dynamic, stable, and downsized, respectively.  相似文献   

8.
Nicotiana tabacum (tobacco) is a natural allotetraploid. The maternal genome donor is not controversial and is probably derived from an ancestor of N. sylvestris. The paternal, T-genome donor has been less clear, with N. tomentosiformis, N. otophora, or an introgression hybrid proposed. Here we provide evidence that the T genome of N. tabacum is derived from a particular lineage of N. tomentosiformis. We show that the repetitive sequences of geminiviral origin, GRD53 and GRD3, are present in the genomes of N. tabacum cultivars, a tobacco cell suspension culture TBY-2, and N. tomentosiformis ac. NIC 479/84. Surprisingly, they are not present in another three varieties of N. tomentosiformis. A detailed cytogenetic analysis also revealed that N. tomentosiformis ac. NIC 479/84 most closely resembles the N. tabacum T genome in the location of other tandem repetitive sequences. Thus, tobacco formed after divergence within N. tomentosiformis, and the spectrum of potential donors of the paternal genome can be narrowed to a genotype of N. tomentosiformis characterized by the presence of GRD53 and GRD3 repeats. It is clear that future paternity studies in tobacco should use N. tomentosiformis ac. NIC 479/84 rather than any other accession.  相似文献   

9.
Nicotiana tabacum (tobacco, Solanaceae) has two 5S ribosomal DNA (rDNA) families, one of unit length approximately 646 bp and the other -430 bp, that differ in the length of the 5S rDNA non-transcribed spacer (NTS). The long 5S rDNA family, found on the T genome of tobacco and in Nicotiana tomentosiformis, contains a GC-rich subregion that is absent in the short family. We designed primers for this subregion and generated a probe that we used against a range of Nicotiana and related Solanaceous species. We demonstrated the presence of the GC-rich subregion in a range of Nicotiana species, but it was absent in Nicotiana sylvestris, Nicotiana longiflora, and two closely related genera, Petunia and Solanum. These data suggest that this subregion of the NTS is likely to have evolved with the genus Nicotiana. The absence of the subregion in N. sylvestris and N. longiflora is likely to have arisen by a deletion event in the evolution of section alatae. We demonstrate patterns of evolution in the 5S rDNA unit cluster in relation to a phylogenetic reconstruction of species relationships in section tomentosae. Nicotiana glutinosa diverged early from the section and contains a 5S rDNA family based on a 550-bp unit. After this divergence, 430- and 650-bp rDNA unit families evolved. The 650-bp family is found in all species of tomentosae (except N. glutinosa) and in tobacco. The 430-bp family within tomentosae includes the GC-rich subregion and is thus unrelated to the 430-bp family in N. sylvestris. Nicotiana setchellii is unusual in that it has three 5S rDNA loci, including one locus that is exceptionally large. This species, unique to tomentosae, has a very abundant 900-bp unit family. It is possible that this 900-bp family occurs on this one large locus. In N. tomentosa and N. kawakamii, the 650-bp family is predominant, whereas N. tomentosiformis and N. otophora have only the 650-bp family. There is no clear relationship between the number of 5S families and the number of 5S rDNA loci. Certainly the replacement of 5S rDNA units, perhaps by gene conversion, has occurred repeatedly in the evolution of genus Nicotiana.  相似文献   

10.
Nicotiana tabacum is believed to have arisen after hybridization of Nicotiana sylvestris with a species in the Tomentosae section of the genus Nicotiana. Recent biochemical experiments have confirmed the conclusions from previous cytogenetic studies that N. sylvestris was the maternal parent and have indicated that Nicotiana tomentosiformis was the paternal parent. However, these studies did not take into account the possibility that a new species of Nicotiana, called K-12, discovered in South America in 1968, could also have been one of the parents. Fraction I proteins were purified from N. tabacum and its putative progenitors, and separated into large and small subunits. Chymotryptic peptides of each subunit were analyzed by ion exchange column chromatography with a gradient elution system. Among 38 resolved peaks of the large subunits, 2 peaks were found to be different among the putative species. Since only N. sylvestris showed an identical chromatogram with N. tabacum, N. sylvestris was concluded to be the maternal progenitor, as the genetic information for the large subunit of Fraction I protein was known to be inherited by the cytoplasmic mode. On the other hand, the small subunit of Fraction I protein is inherited by the Mendelian mode and therefore N. tabacum, an allopolyploid, could be expected to contain two types of small subunits, one derived from N. sylvestris and the other from a paternal progenitor. N. sylvestris lacks two of the 25 chymotryptic peptides of the small subunit of N. tabacum. Among 3 putative paternal progenitors, these two peaks appeared only in N. tomentosiformis, but not in Nicotiana otophora or K-12. Thus, N. tomentosiformis was concluded to be a paternal progenitor of N. tabacum. The conclusion was verified by comparing chymotryptic peptides of small subunits from three amphidiploids of N. sylvestris crossed with N. tomentosiformis, N. sylvestris crossed with N. otophora snd N. sylvestris crossed with K-12. The analytical results showed that only the progeny of N. sylvestris crossed with N. tomentosiformis contained the same small subunits as N. tabacium.  相似文献   

11.
H S Moon  J S Nicholson  R S Lewis 《Génome》2008,51(8):547-559
The recent development of microsatellite markers for tobacco, Nicotiana tabacum L., may be valuable for genetic studies within the genus Nicotiana. The first objective was to evaluate transferability of 100 N. tabacum microsatellite primer combinations to 5 diploid species closely related to tobacco. The number of primer combinations that amplified scorable bands in these species ranged from 42 to 56. Additional objectives were to assess levels of genetic diversity amongst available accessions of diploid relatives closely related to tobacco (species of sections Sylvestres and Tomentosae), and to evaluate the efficacy of microsatellite markers for establishing species relationships in comparison with existing phylogenetic reconstructions. A subset of 46 primer combinations was therefore used to genotype 3 synthetic tobaccos and an expanded collection of 51 Nicotiana accessions representing 15 species. The average genetic similarity for 7 diverse accessions of tobacco was greater than the average similarity for N. otophora accessions, but lower than the average genetic similarities for N. sylvestris, N. tomentosa, N. kawakamii, and N. tomentosiformis accessions. A microsatellite-based phylogenetic tree was largely congruent with taxonomic representations based on morphological, cytological, and molecular observations. Results will be useful for selection of parents for creation of diploid mapping populations and for germplasm introgression activities.  相似文献   

12.
The origin and evolution of geminivirus-related DNA sequences in Nicotiana   总被引:3,自引:0,他引:3  
A horizontal transmission of a geminiviral DNA sequence, into the germ line of an ancestral Nicotiana, gave rise to multiple repeats of geminivirus-related DNA, GRD, in the genome. We follow GRD evolution in Nicotiana tabacum (tobacco), an allotetraploid, and its diploid relatives, and show GRDs are derived from begomoviruses. GRDs occur in two families: the GRD5 family's ancestor integrated into the common ancestor of three diploid species, Nicotiana kawakamii, Nicotiana tomentosa and Nicotiana tomentosiformis, on homeologous group 4 chromosomes. The GRD3 family was acquired more recently on chromosome 2 in a lineage of N. tomentosiformis, the paternal ancestor of tobacco. Both GRD families include individual members that are methylated and diverged. Using relative rates of synonymous and nonsynonymous nucleotide substitutions, we tested for evidence of selection on GRD units and found none within the GRD3 and GRD5 families. However, the substitutions between GRD3 and GRD5 do show a significant excess of synonymous changes, suggesting purifying selection and hence a period of autonomous evolution between GRD3 and GRD5 integration. We observe in the GRD3 family, features of Helitrons, a major new class of putative rolling-circle replicating eukaryotic transposon, not found in the GRD5 family or geminiviruses. We speculate that the second integration event, resulting in the GRD3 family, involved a free-living geminivirus, a Helitron and perhaps also GRD5. Thus our data point towards recurrent dynamic interplay between geminivirus and plant DNA in evolution.  相似文献   

13.
14.
Tobacco endogenous pararetroviruses (TEPRVs) represent the first virus-derived repetitive sequence family found in plants. The sequence conservation of TEPRVs and the lack of an exogenous form of the virus suggest that TEPRVs serve a beneficial function, perhaps by furnishing virus resistance via homologous sequence interactions. This hypothesis is supported by the observation that TEPRVs are methylated and negligibly transcribed. Moreover, transgenes driven by the TEPRV enhancer are silenced and methylated when introduced into tobacco, but remain active and unmethylated in non-host species devoid of sequences homologous to TEPRVs. In transgenic Arabidopsis, the TEPRV enhancer is active primarily in shoot meristems. This suggests that the virus giving rise to TEPRVs could infect germ cell precursors, a prerequisite for meiotically heritable insertions into host chromosomes. The copy number, organization and methylation of TEPRVs in tetraploid tobacco and one of its diploid ancestors, Nicotiana sylvestris, the presumed original host for the virus, have remained constant since polyploid formation. The remarkable conservation of these features in two independently evolving species further supports a role for TEPRVs in viral immunity.  相似文献   

15.
16.
An approximately 135-bp sequence called the A1/A2 repeat was isolated from the transcribed region of the 26-18S rDNA intergenic spacer (IGS) of Nicotiana tomentosiformis. Fluorescence in situ hybridization (FISH) and Southern blot analysis revealed its occurrence as an independent satellite (termed an A1/A2 satellite) outside of rDNA loci in species of Nicotiana section Tomentosae. The chromosomal location, patterns of genomic dispersion, and copy numbers of its tandemly arranged units varied between the species. In more distantly related Nicotiana species the A1/A2 repeats were found only at the nucleolar organizer regions (NOR). There was a trend toward the elimination of the A1/A2 satellite in N. tabacum (tobacco), an allotetraploid with parents closely related to the diploids N. sylvestris and N. tomentosiformis. This process may have already commenced in an S(3) generation of synthetic tobacco. Cytosine residues in the IGS were significantly hypomethylated compared with the A1/A2 satellite. There was no clear separation between the IGS and satellite fractions in sequence analysis of individual clones and we found no evidence for CG suppression. Taken together the data indicate a dynamic nature of the A1/A2 repeats in Nicotiana genomes, with evidence for recurrent integration, copy number expansions, and contractions.  相似文献   

17.
N Ren  M P Timko 《Génome》2001,44(4):559-571
Amplified fragment length polymorphism (AFLP) analysis was used to determine the degree of intra- and inter-specific genetic variation in the genus Nicotiana. Forty-six lines of cultivated tobacco (Nicotiana tabacum L.) and seven wild Nicotiana species, including N. sylvestris, N. tomentosiformis, N. otophora, N. glutinosa, N. suaveolens, N. rustica, and N. longiflora, were analyzed, using at least eight different oligonucleotide primer combinations capable of detecting a minimum of 50 polymorphic bands per primer pair. The amount of genetic polymorphism present among cultivated tobacco lines (N. tabacum) was limited, as evidenced by the high degree of similarity in the AFLP profiles of cultivars collected worldwide. Six major clusters were found within cultivated tobacco that were primarily based upon geographic origin and manufacturing quality traits. A greater amount of genetic polymorphism exists among wild species of Nicotiana than among cultivated forms. Pairwise comparisons of the AFLP profiles of wild and cultivated Nicotiana species show that polymorphic bands present in N. tabacum can be found in at least one of three proposed wild progenitor species (i.e., N. sylvestris, N. tomentosiformis, and N. otophora). This observation provides additional support for these species contributing to the origin of N. tabacum.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号