首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Gel retardation assays using pea nuclear extracts have detected specific binding to regions of the promoter of the pea plastocyanin gene (petE). Several complexes which differ in sensitivity to competition with unlabelled promoter fragments and various DNA alternating copolymers, to heat treatment and to digestion with proteinase K have been detected. A protein factor, PCF1, forming one of these complexes was heat-stable and most sensitive to competition with poly(dAdT).poly(dAdT) compared to other alternating copolymers. DNase I footprinting assays showed that tracts of A/T-rich sequence within the -444 to -177 positive regulatory region of the petE promoter were protected in the presence of the pea nuclear extract. The factor PCF1 copurified with a high-mobility-group (HMG) protein preparation from pea chromatin. DNase I footprinting with the HMG protein preparation demonstrated that similar tracts of A/T-rich sequences within the promoter were protected. Southwestern-blot analysis of pea HMG proteins purified by gel filtration through Superose 12 detected a single DNA-binding species of 21 kDa. The properties of the factor PCF1 suggest that it is likely to be an HMG I protein.  相似文献   

16.
17.
18.
19.
20.
S Faber  T Ip  D Granner    R Chalkley 《Nucleic acids research》1991,19(17):4681-4688
We have identified DNA elements in the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter which are bound 'in vivo' by proteins under conditions of basal level gene expression and have evaluated several hypothesis to account for the tissue specific expression of the gene. In vitro DNase I footprinting demonstrated that factors which bind to basal expression elements of the PEPCK promoter, the BSE/CRE and NFI/CCAAT sites, are also present in HTC and XC cells which do not express the PEPCK gene. 'In vivo' DNase I footprinting demonstrated that the BSE/CRE, NFI/CCAAT, and three additional sites are bound by protein in H4IIE cells which express the PEPCK gene but not in the HTC or XC cells. No evidence for a repressor protein or for phased nucleosome binding to the PEPCK promoter in HTC or XC cells could be detected. Genomic sequencing was used to determine if differential methylation of the PEPCK promoter could account for the lack of factor binding in HTC and XC nuclei. None of the 14 cytosine residues in CpG dinucleotides was methylated in H4IIE or rat liver DNA, all were methylated in rat sperm DNA, and 6 were methylated in HTC DNA; including the cytosine at position--90 within the BSE/CRE. Only one cytosine residue, at position--90, was methylated in XC DNA. Treatment of XC cells with 5-azacytidine resulted in loss of methylation at the--90 position yet this was insufficient to allow synthesis of a detectable amount of PEPCK mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号