首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the modulation of dragon's blood on the tetrodotoxin-resistant (TTX-R) sodium currents in dorsal root ganglion (DRG) neurons and explore its corresponding material basis for the efficacy, using whole-cell patch clamp technique, the effects of dragon's blood and the combined effects of three components (cochinchinenin A, cochinchinenin B, and loureirin B) extracted from dragon's blood on the TTX-R sodium currents in acute-isolated DRG neurons of rats were observed. According to the operational definition of material basis for the efficacy of TCM established, the material basis of the modulation on the TTX-R sodium currents in DRG neurons of dragon's blood was judged from the experimental results. The drug interaction equation of Greco et al. was used to assess the interaction of the three components extracted from dragon's blood. This investigation demonstrated that dragon's blood suppressed the peak TTX-R sodium currents in a dose-dependent way and affected the activations of TTX-R sodium currents. The effects of the combination of cochinchinenin A, cochinchinenin B, and loureirin B were in good agreement with those of dragon's blood. Although the three components used alone could modulate TTX-R sodium currents, the concentrations of the three components used alone were respectively higher than those used in combination when the inhibition rates on the TTX-R sodium currents of them used alone and in combination were the same. The combined effects of the three components were synergistic. These results suggested that the interference with pain messages caused by the modulation of dragon's blood on TTX-R sodium currents in DRG neurons may explain some of the analgesic effect of dragon's blood and the corresponding material basis for the efficacy is the combination of cochinchinenin A, cochinchinenin B, and loureirin B.  相似文献   

2.
To clarify the modulation of dragon’s blood on the tetrodotoxin-resistant (TTX-R) sodium currents in dorsal root ganglion (DRG) neurons and explore its corresponding material basis for the efficacy, using whole-cell patch clamp technique, the effects of dragon’s blood and the combined effects of three components (cochinchinenin A, cochinchinenin B, and loureirin B) extracted from dragon’s blood on the TTX-R sodium currents in acute-isolated DRG neurons of rats were observed. According to the operational definition of material basis for the efficacy of TCM established, the material basis of the modulation on the TTX-R sodium currents in DRG neurons of dragon’s blood was judged from the experimental results. The drug interaction equation of Greco et al. was used to assess the interaction of the three components extracted from dragon’s blood. This investigation demonstrated that dragon’s blood suppressed the peak TTX-R sodium currents in a dose-dependent way and affected the activations of TTX-R sodium currents. The effects of the combination of cochinchinenin A, cochinchinenin B, and loureirin B were in good agreement with those of dragon’s blood. Although the three components used alone could modulate TTX-R sodium currents, the concentrations of the three components used alone were respectively higher than those used in combination when the inhibition rates on the TTX-R sodium currents of them used alone and in combination were the same. The combined effects of the three components were synergistic. These results suggested that the interference with pain messages caused by the modulation of dragon’s blood on TTX-R sodium currents in DRG neurons may explain some of the analgesic effect of dragon’s blood and the corresponding material basis for the efficacy is the combination of cochinchinenin A, cochinchinenin B, and loureirin B.  相似文献   

3.
To search the modulation mechanism of loureirin B, a flavonoid is extracted from Dracaena cochinchinensis, on tetrodotoxin-resistant (TTX-R) sodium channel in dorsal root ganglion (DRG) neurons of rats. Experiments were carried out based on patch-clamp technique and molecular biological methods. We observed the time-dependent inhibition of loureirin B on TTX-R sodium currents in DRG neurons and found that neither occupancy theory nor rate theory could well explain the time-dependent inhibitory effect of loureirin B on TTX-R sodium currents. It suggested that a second messenger-mediated signaling pathway may be involved in the modulation mechanism. So the cyclin AMP (cAMP) level of the DRG neurons before and after incubation with loureirin B was tested by ELISA Kit. Results showed that loureirin B could increase the cAMP level and the increased cAMP was caused by the enhancement of adenylate cyclase (AC) induced by loureirin B. Immunolabelling experiments further confirmed that loureirin B can promote the production of PKA in DRG neurons. In the presence of the PKA inhibitor H-89, the inhibitory effect of loureirin B on TTX-R sodium currents was reversed. Forskolin, a tool in biochemistry to raise the levels of cAMP, also could reduce TTX-R sodium currents similar to that of loureirin B. These studies demonstrated that loureirin B can modulate the TTX-R sodium channel in DRG neurons via an AC/cAMP/PKA pathway involving the activation of AC and PKA, which also can be used to explain the other pharmacological effects of loureirin B.  相似文献   

4.
Using whole-cell patch clamp technique on the membrane of freshly isolated dorsal root ganglion (DRG) neurons, the effects of dragon’s blood resin and its important component loureirin B on tetrodotoxin-sensitive (TTX-S) voltage-gated sodium currents were observed. The results show that both blood resin and loureirin B could suppress TTX-S voltage-gated sodium currents in a dose-dependent way. The peak current amplitudes and the steady-state activation and inactivation curves are also made to shift by 0.05% blood resin and 0.2 mmol/L loureirin B. These results demonstrate that the effects of blood resin on TTX-S sodium current may contribute to loureirin B in blood resin. Perhaps the analgesic effect of blood resin is caused partly by loureirin B directly interfering with the nociceptive transmission of primary sensory neurons.  相似文献   

5.
In vivo experiments were designed to verify the analgesic effect of Dragon’s Blood and the material basis for this effect. Extracellular microelectrode recordings were used to observe the effects of Dragon’s Blood and various combinations of the three components (cochinchinenin A, cochinchinenin B, and loureirin B) extracted from Dragon’s Blood on the discharge activities of wide dynamic range (WDR) neurons in spinal dorsal horn (SDH) of intact male Wistar rats evoked by electric stimulation at sciatic nerve. When the Hill's coefficients describing the dose-response relations of drugs were dif-ferent, based on the concept of dose equivalence, the equations of additivity surfaces which can be applied to assess the interaction between three drugs were derived. Adopting the equations and Tal-larida's isobole equations used to assess the interaction between two drugs with dissimilar dose-response relations, the effects produced by various combinations of the three components in modulating the evoked discharge activities of WDR neurons were evaluated. Results showed that Dragon’s Blood and its three components could inhibit the evoked discharge frequencies of WDR neurons in a concentration-dependent way. The Hill's coefficients describing dose-response relations of three components were different. Only the combined effect of cochinchinenin A, cochinchinenin B and loureirin B was similar to that of Dragons Blood. Furthermore, the combined effect was synergistic. This investigation demonstrated that through the synergistic interaction of the three components Dragon’s Blood could interfere with the transmission and processing of pain signals in spinal dorsal horn. All these further proved that the combination of cochinchinenin A, cochinchinenin B, and loureirin B was the material basis for the analgesic effect of Dragon’s Blood.  相似文献   

6.
Copyright by Science in China Press 2004 Dragons blood resin is one of famous precious Traditional Chinese Medicine (TCM), which has been widely applied in clinical treatment of cardiovascular disease, cervical spondylosis, gynecological disease, etc., due to its actions of dissipating blood stasis, eas-ing pain, arresting bleeding, promoting tissue regen-eration and wound healing[1]. At present, the investi-gation on the pharmacological mechanism of blood resin is concentrated on promoting…  相似文献   

7.
Using whole-cell patch clamp technique on the membrane of freshly isolated dorsal root ganglion (DRG) neurons, the effects of dragon’s blood resin and its important component loureirin B on tetrodotoxin-sensitive (TTX-S) voltage-gated sodium currents were observed. The results show that both blood resin and loureirin B could suppress TTX-S voltage-gated sodium currents in a dose-dependent way. The peak current amplitudes and the steady-state activation and inactivation curves are also made to shift by 0.05% blood resin and 0.2 mmol/L loureirin B. These results demonstrate that the effects of blood resin on TTX-S sodium current may contribute to loureirin B in blood resin. Perhaps the analgesic effect of blood resin is caused partly by loureirin B directly interfering with the nociceptive transmission of primary sensory neurons.  相似文献   

8.
Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction injury (CCI) of the sciatic nerve in small DRG neurons. Whole cell patch-clamp recordings were obtained in vitro from L4 and/or L5 dissociated, small DRG neurons following in vivo DRG compression or nerve injury. The small DRG neurons were classified into slow and fast subtype neurons based on expression of the slow-inactivating TTX-R and fast-inactivating TTX-S Na+ currents. CCD treatment significantly reduced TTX-R and TTX-S current densities in the slow and fast neurons, but CCI selectively reduced the TTX-R and TTX-S current densities in the slow neurons. Changes in half-maximal potential (V1/2) and curve slope (k) of steady-state inactivation of Na+ currents were different in the slow and fast neurons after CCD and CCI treatment. The window current of TTX-R and TTX-S currents in fast neurons were enlarged by CCD and CCI, while only that of TTX-S currents in slow neurons was increased by CCI. The decay rate of TTX-S and both TTX-R and TTX-S currents in fast neurons were reduced by CCD and CCI, respectively. These findings provide a possible sodium channel mechanism underlying CCD-induced DRG neuron hyperexcitability and hyperalgesia and demonstrate a differential effect in the Na+ currents of small DRG neurons after somata compression and peripheral nerve injury. This study also points to a complexity of hyperexcitability mechanisms contributing to CCD and CCI hyperexcitability in small DRG neurons.  相似文献   

9.
Two tetrodotoxin-resistant (TTX-R) voltage-gated sodium channels, SNS and NaN, are preferentially expressed in small dorsal root ganglia (DRG) and trigeminal ganglia neurons, most of which are nociceptive, of rat and mouse. We report here the sequence of NaN from human DRG, and demonstrate the presence of two TTX-R currents in human DRG neurons. One current has physiological properties similar to those reported for SNS, while the other displays hyperpolarized voltage-dependence and persistent kinetics; a similar TTX-R current was recently identified in DRG neurons of sns-null mouse. Thus SNS and NaN channels appear to produce different currents in human DRG neurons.  相似文献   

10.
The composition of Na+ currents in dorsal root ganglia (DRG) neurons depends on their neuronal phenotype and innervation target. Two TTX-resistant (TTX-R) Na+ currents [voltage-gated Na channels (Nav)] have been described in small DRG neurons; one with slow inactivation kinetics (Nav1.8) and the other with persistent kinetics (Nav1.9), and their modulation has been implicated in inflammatory pain. This has not been studied in neurons projecting to the colon. This study examined the relative importance of these currents in inflammation-induced changes in a mouse model of inflammatory bowel disease. Colonic sensory neurons were retrogradely labeled, and colitis was induced by instillation of trinitrobenzenesulfonic acid (TNBS) into the lumen of the distal colon. Seven to ten days later, immunohistochemical properties were characterized in controls, and whole cell recordings were obtained from small (<40 pF) labeled DRG neurons from control and TNBS animals. Most neurons exhibited both fast TTX-sensitive (TTX-S)- and slow TTX-R-inactivating Na+ currents, but persistent TTX-R currents were uncommon (<15%). Most labeled neurons were CGRP (79%), tyrosine kinase A (trkA) (84%) immunoreactive, but only a small minority bind IB4 (14%). TNBS-colitis caused ulceration, thickening of the colon and significantly increased neuronal excitability. The slow TTX-R-inactivating Na current density (Nav1.8) was significantly increased, but other Na currents were unaffected. Most small mouse colonic sensory neurons are CGRP, trkA immunoreactive, but not isolectin B4 reactive and exhibit fast TTX-S, slow TTX-R, but not persistent TTX-R Na+ currents. Colitis-induced hyperexcitability is associated with increased slow TTX-R (Nav1.8) Na+ current. Together, these findings suggest that colitis alters trkA-positive neurons to preferentially increase slow TTX-R Na+ (Nav1.8) currents.  相似文献   

11.
Differential alterations of sodium channels in small nociceptive C-fiber DRG neurons have been implicated in diabetic neuropathy. In this study, we investigated sodium currents and the expression of sodium channels in large A-fiber DRG neurons in diabetic rats. Compared with controls, large neurons from diabetic rats showed significant increases in both total and TTX-S sodium currents and approximately -15mV shifts in their voltage-dependent activation kinetics. TTX-R Na(v)1.9 sodium current was also significantly increased, whereas no alteration of TTX-R Na(v)1.8 current was observed in neurons from diabetic rats. Sodium current induced by fast- or slow-voltage ramps increased markedly in the diabetic neurons as well. Immunofluorescence studies showed significant increases in the levels and number of large DRG neurons from diabetic rats expressing Na(v)1.2, Na(v)1.3, Na(v)1.7, and Na(v)1.9 whereas Na(v)1.8 decreased. We also observed a decrease in the number of nodes of Ranvier expressing Na(v)1.8 and in staining intensity of Na(v)1.6 and Na(v)1.8 at nodes. Our results suggest that alterations of sodium channels occur in large DRG neurons and A-fibers, and may play an important role in diabetic sensory neuropathy.  相似文献   

12.
敬钊缨毛蛛毒素-V(Jingzhaotoxin-V, JZTX-V)是从敬钊缨毛蛛粗毒中纯化到的一种新型河豚毒素不敏感型钠通道抑制剂, 为了深入研究该毒素的结构与功能关系, 应用芴甲氧羰基(Fmoc)固相多肽化学合成方法合成了用丙氨酸(Ala)替代JZTX-V第20位精氨酸残基的突变体R20A-JZTX-V, 合成线性多肽经反相高效液相色谱分离纯化后进行谷胱甘肽氧化复性。复性产物分别用基质辅助激光解析飞行时间质谱(MALDI-TOF/TOF MS)进行分子量的鉴定, 用膜片钳电生理方法进行电压门控钠通道抑制活性分析。研究结果表明, Arg20被Ala取代后, R20A-JZTX-V对大鼠背根神经节细胞(DRG)膜上表达的河豚毒素敏感型(TTX-S)钠通道的抑制活性与天然JZTX-V相当, 提示Arg20与JZTX-V对TTX-S钠通道的抑制活性无关或关系不大; 而R20A-JZTX-V对TTX-R钠通道的抑制活性却比天然JZTX-V下降了约18.3倍, 说明Arg20是与JZTX-V对河豚毒素不敏感型(TTX-R)钠通道抑制活性相关的关键活性残基之一, 推测R20A-JZTX-V活性降低的原因是用Ala替代Arg20后改变了JZTX-V与TTX-R型钠通道的作用位点。  相似文献   

13.
Diabetic neuropathy is a common form of peripheral neuropathy, yet the mechanisms responsible for pain in this disease are poorly understood. Alterations in the expression and function of voltage-gated tetrodotoxin-resistant (TTX-R) sodium channels have been implicated in animal models of neuropathic pain, including models of diabetic neuropathy. We investigated the expression and function of TTX-sensitive (TTX-S) and TTX-R sodium channels in dorsal root ganglion (DRG) neurons and the responses to thermal hyperalgesia and mechanical allodynia in streptozotocin-treated rats between 4-8 weeks after onset of diabetes. Diabetic rats demonstrated a significant reduction in the threshold for escape from innocuous mechanical pressure (allodynia) and a reduction in the latency to withdrawal from a noxious thermal stimulus (hyperalgesia). Both TTX-S and TTX-R sodium currents increased significantly in small DRG neurons isolated from diabetic rats. The voltage-dependent activation and steady-state inactivation curves for these currents were shifted negatively. TTX-S currents induced by fast or slow voltage ramps increased markedly in neurons from diabetic rats. Immunoblots and immunofluorescence staining demonstrated significant increases in the expression of Na(v)1.3 (TTX-S) and Na(v) 1.7 (TTX-S) and decreases in the expression of Na(v) 1.6 (TTX-S) and Na(v)1.8 (TTX-R) in diabetic rats. The level of serine/threonine phosphorylation of Na(v) 1.6 and In Na(v)1.8 increased in response to diabetes. addition, increased tyrosine phosphorylation of Na(v)1.6 and Na(v)1.7 was observed in DRGs from diabetic rats. These results suggest that both TTX-S and TTX-R sodium channels play important roles and that differential phosphorylation of sodium channels involving both serine/threonine and tyrosine sites contributes to painful diabetic neuropathy.  相似文献   

14.
We have previously reported that enhanced excitability of dorsal root ganglia (DRG) neurons contributes to the development of bone cancer pain, which severely decreases the quality of life of cancer patients. Nav1.8, a tetrodotoxin-resistant (TTX-R) sodium channel, contributes most of the sodium current underlying the action potential upstroke and accounts for most of the current in later spikes in a train. We speculate that the Nav1.8 sodium channel is a potential candidate responsible for the enhanced excitability of DRG neurons in rats with bone cancer pain. Here, using electrophysiology, Western blot and behavior assays, we documented that the current density of TTX-R sodium channels, especially the Nav1.8 channel, increased significantly in DRG neurons of rats with cancer-induced bone pain. This increase may be due to an increased expression of Nav1.8 on the membrane of DRG neurons. Accordantly, blockade of Nav1.8 sodium channels by its selective blocker A-803467 significantly alleviated the cancer-induced mechanical allodynia and thermal hyperalgesia in rats. Taken together, these results suggest that functional upregulation of Nav1.8 channels on the membrane of DRG neurons contributes to the development of cancer-induced bone pain.  相似文献   

15.
Yu YQ  Zhao F  Guan SM  Chen J 《PloS one》2011,6(5):e19865
Tetrodotoxin-resistant (TTX-R) sodium channels Na(V)1.8 and Na(V)1.9 in sensory neurons were known as key pain modulators. Comparing with the widely reported Na(V)1.8, roles of Na(V)1.9 on inflammatory pain are poorly studied by antisense-induced specific gene knockdown. Here, we used molecular, electrophysiological and behavioral methods to examine the effects of antisense oligodeoxynucleotide (AS ODN) targeting Na(V)1.8 and Na(V)1.9 on inflammatory pain. Following complete Freund's adjuvant (CFA) inflammation treatment, Na(V)1.8 and Na(V)1.9 in rat dorsal root ganglion (DRG) up-regulated mRNA and protein expressions and increased sodium current densities. Immunohistochemical data demonstrated that Na(V)1.8 mainly localized in medium and small-sized DRG neurons, whereas Na(V)1.9 only expressed in small-sized DRG neurons. Intrathecal (i.t.) delivery of AS ODN was used to down-regulate Na(V)1.8 or Na(V)1.9 expressions confirmed by immunohistochemistry and western blot. Unexpectedly, behavioral tests showed that only Na(V)1.8 AS ODN, but not Na(V)1.9 AS ODN could reverse CFA-induced heat and mechanical hypersensitivity. Our data indicated that TTX-R sodium channels Na(V)1.8 and Na(V)1.9 in primary sensory neurons played distinct roles in CFA-induced inflammatory pain and suggested that antisense oligodeoxynucleotide-mediated blocking of key pain modulator might point toward a potential treatment strategy against certain types of inflammatory pain.  相似文献   

16.
It has been documented that nodose neurons express TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na(+) channels. However, wheteher nodose neurons functionally express persistent TTX-R Na(+) currents has not been reported. The present study first demonstrated persistent TTX-R Na(+) channel activities in 7/19 C-type nodose neurons in the presence of PGE(2) using whole-cell patch. Voltage-dependent property showed that persistent TTX-R Na(+) currents were activated at near -60mV and channels were maintained open. The average peak was approximately 300-500pA. The mid-point of activation exhibited a greater shift to a more hyperpolarized potential in the neurons co-expressing TTX-R and persistent TTX-R Na(+) currents than those expressing TTX-R only. This effect of PGE(2) was also mimicked by Forskolin. The fact that persistent TTX-R Na(+) currents were only activated by PGE(2) suggested that the modulatory effects of PGE(2) on persistent TTX-R Na(+) currents are crucial in PGE(2)-mediated neuronal excitability, and may have a great impact on specifically physiological significance.  相似文献   

17.
Ji YH  Liu T 《生理学报》2008,60(5):628-634
Voltage-gated sodium channels(VGSCs) are transmembrane proteins responsible for generation and conduction of action potentials in excitable cells.Physiological and pharmacological studies have demonstrated that VGSCs play a critical role in chronic pain associated with tissue or nerve injury.Many long-chain peptide toxins(60-76 amino acid residues) purified from the venom of Asian scorpion Buthus martensii Karsch(BmK) are investigated to be sodium channel-specific modulators.The α-like neurotoxins that can ...  相似文献   

18.
Nociceptive dorsal root ganglion (DRG) neurons express tetrodotoxin-sensitive (TTX-S) and -resistant (TTX-R) Na(+) current (I(Na)) mediated by voltage-gated Na(+) channels (VGSCs). In nociceptive DRG neurons, VGSC β2 subunits, encoded by Scn2b, selectively regulate TTX-S α subunit mRNA and protein expression, ultimately resulting in changes in pain sensitivity. We hypothesized that VGSCs in nociceptive DRG neurons may also be regulated by β1 subunits, encoded by Scn1b. Scn1b null mice are models of Dravet Syndrome, a severe pediatric encephalopathy. Many physiological effects of Scn1b deletion on CNS neurons have been described. In contrast, little is known about the role of Scn1b in peripheral neurons in vivo. Here we demonstrate that Scn1b null DRG neurons exhibit a depolarizing shift in the voltage dependence of TTX-S I(Na) inactivation, reduced persistent TTX-R I(Na), a prolonged rate of recovery of TTX-R I(Na) from inactivation, and reduced cell surface expression of Na(v)1.9 compared with their WT littermates. Investigation of action potential firing shows that Scn1b null DRG neurons are hyperexcitable compared with WT. Consistent with this, transient outward K(+) current (I(to)) is significantly reduced in null DRG neurons. We conclude that Scn1b regulates the electrical excitability of nociceptive DRG neurons in vivo by modulating both I(Na) and I(K).  相似文献   

19.
Approximately 60% of morphine is glucuronidated to morphine-3-glucuronide (M3G) which may aggravate preexisting pain conditions. Accumulating evidence indicates that M3G signaling through neuronal Toll-like receptor 4 (TLR4) may be central to this proalgesic signaling event. These events are known to include elevated neuronal excitability, increased voltage-gated sodium (NaV) current, tactile allodynia and decreased opioid analgesic efficacy. Using an in vitro ratiometric-based calcium influx analysis of acutely dissociated small and medium-diameter neurons derived from lumbar dorsal root ganglion (DRG), we observed that M3G-sensitive neurons responded to lipopolysaccharide (LPS) and over 35% of these M3G/LPS-responsive cells exhibited sensitivity to capsaicin. In addition, M3G-exposed sensory neurons significantly increased excitatory activity and potentiated NaV current as measured by current and voltage clamp, when compared to baseline level measurements. The M3G-dependent excitability and potentiation of NaV current in these sensory neurons could be reversed by the addition of carbamazepine (CBZ), a known inhibitor of several NaV currents. We then compared the efficacy between CBZ and morphine as independent agents, to the combined treatment of both drugs simultaneously, in the tibial nerve injury (TNI) model of neuropathic pain. The potent anti-nociceptive effects of morphine (5 mg/kg, i.p.) were observed in TNI rodents at post-injury day (PID) 7–14 and absent at PID21–28, while administration of CBZ (10 mg/kg, i.p.) alone failed to produce anti-nociceptive effects at any time following TNI (PID 7–28). In contrast to either drug alone at PID28, the combination of morphine and CBZ completely attenuated tactile hyperalgesia in the rodent TNI model. The basis for the potentiation of morphine in combination with CBZ may be due to the effects of a latent upregulation of NaV1.7 in the DRG following TNI. Taken together, our observations demonstrate a potential therapeutic use of morphine and CBZ as a combinational treatment for neuropathic pain.  相似文献   

20.
Opiates are potent analgesics for moderate to severe pain. Paradoxically, patients under chronic opiates have reported hypernociception, the mechanisms of which are unknown. Using standard patch-clamp technique, we examined the excitability, biophysical properties of tetrodotoxin-resistant (TTX-R) Na(+) and transient receptor potential vanilloid 1 (TRPV1) channels of dorsal root ganglia neurons (DRG) (L(5)-S(1)) from mice pelleted with morphine (75 mg) or placebo (7 days). Hypernociception was confirmed by acetic acid-writhing test following 7-day morphine. Chronic morphine enhanced the neuronal excitability, since the rheobase for action potential (AP) firing was significantly (P < 0.01) lower (38 ± 7 vs. 100 ± 15 pA) while the number of APs at 2× rheobase was higher (4.4 ± 0.8 vs. 2 ± 0.5) than placebo (n = 13-20). The potential of half-maximum activation (V(1/2)) of TTX-R Na(+) currents was shifted to more hyperpolarized potential in the chronic morphine group (-37 ± 1 mV) vs. placebo (-28 ± 1 mV) without altering the V(1/2) of inactivation (-41 ± 1 vs. -33 ± 1 mV) (n = 8-11). Recovery rate from inactivation of TTX-R Na(+) channels or the mRNA level of any Na(+) channel subtypes did not change after chronic morphine. Also, chronic morphine significantly (P < 0.05) enhanced the magnitude of TRPV1 currents (-64 ± 11 pA/pF) vs. placebo (-18 ± 6 pA/pF). The increased excitability of sensory neurons by chronic morphine may be due to the shift in the voltage threshold of activation of TTX-R Na(+) currents. Enhanced TRPV1 currents may have a complementary effect, with TTX-R Na(+) currents on opiate-induced hyperexcitability of sensory neurons causing hypernociception. In conclusion, chronic morphine-induced hypernociception is associated with hyperexcitability and functional remodeling of TTX-R Na(+) and TRPV1 channels of sensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号