共查询到20条相似文献,搜索用时 0 毫秒
1.
Short-term cultured cumulus cell lines (1-5BCC) derived from 5 individual cows were used in nuclear transfer (NT) and 1188 enucleated bovine oocytes matured in vitro were used as nuclear recipients. A total of 931 (78.4%) cloned embryos were reconstructed, of which 763 (82%) cleaved, 627 (67.3%) developed to 8-cell stage, and 275 (29.5%) reached blastocyst stage. The average cell number of blastocysts was 124±24.5 (n=20). In this study, the effects of donor cell sources, serum starvation of donor cells, time interval from fusion to activation (IFA) were also tested on cloning efficiency. These results showed that blastocyst rates of embryos reconstructed from 5 different individuals cells were significantly different among them (14.1%, 45.2%, 27.3%, 34.3%, vs 1.5%, P<0.05); that serum starvation of donor cells had no effect on blastocyst development rate of NT embryos (47.1% vs 44.4%, P>0.05); and that blastocyst rate (20.3%) of the group with fusion/activation interval of 2–3 h, was significantly lower than that of the 3–6 h groups (31.0%), while not significantly different among 3–4 h (P < 0.05), 4–5 h, and 5–6 h groups (P≥0.05). Sixty-three thawed NT blastocysts were transferred to 31 recipient cows, of which 4 pregnancies were established and two cloned calves were given birth. These results indicate that serum starvation of cumulus cells is not a key factor for successful bovine cloning, while IFA treatment and sources of donor cells have effects on cloning efficiency. 相似文献
2.
Short-term cultured cumulus cell lines (1-5BCC) derived from 5 individual cows were used in nuclear transfer (NT) and 1188 enucleated bovine oocytes matured in vitro were used as nuclear recipients. A total of 931 (78.4%) cloned embryos were reconstructed, of which 763 (82%) cleaved, 627 (67.3%) developed to 8-cell stage, and 275 (29.5%) reached blastocyst stage. The average cell number of blastocysts was 124±24.5 (n=20). In this study, the effects of donor cell sources, serum starvation of donor cells, time interval from fusion to activation (IFA) were also tested on cloning efficiency. These results showed that blastocyst rates of embryos reconstructed from 5 different individuals cells were significantly different among them (14.1%, 45.2%, 27.3%, 34.3%, vs 1.5%, P<0.05); that serum starvation of donor cells had no effect on blastocyst development rate of NT embryos (47.1% vs 44.4%, P>0.05); and that blastocyst rate (20.3%) of the group with fusion/activation interval of 2-3 h, was significantly lower 相似文献
3.
以经过转染的乳腺上皮细胞生产克隆羊 总被引:1,自引:1,他引:1
为研究转基因乳腺上皮细胞发育的全能性,利用电转染方法将人乳铁蛋白(hLF)乳腺特异性表达载体电转染山羊乳腺上皮细胞,经G418和PCR筛选获得阳性克隆细胞株,经催乳素诱导的细胞株上清液用Western blotting方法检测hLF的表达。以转基因与上清液中表达hLF均为阳性的细胞为核供体细胞,进行山羊体细胞核移植。结果为:16株细胞表达重组hLF,分子质量为75 kD;将144枚重构胚移入16只同步发情的山羊输卵管中,在移植后的30 d、60 d和90 d的妊娠率分别为87.5%、81.3%和62.5%;最终3只受体妊娠足月,产下3只克隆羊,克隆效率为2.1%,PCR-RFLP分析表明克隆羊均来自供体羊细胞,但没有整合外源基因。结果表明,hLF转基因乳腺上皮细胞能分泌hLF;乳腺上皮细胞经转染、筛选和长期培养的条件下,能保持发育的全能性。 相似文献
4.
Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells 总被引:8,自引:0,他引:8
Takeda K Akagi S Kaneyama K Kojima T Takahashi S Imai H Yamanaka M Onishi A Hanada H 《Molecular reproduction and development》2003,64(4):429-437
In embryos derived by nuclear-transfer (NT), fusion of donor cell and recipient oocyte caused mitochondrial heteroplasmy. Previous studies from other laboratories have reported either elimination or maintenance of donor-derived mitochondrial DNA (mtDNA) from somatic cells in cloned animals. Here we examined the distribution of donor mtDNA in NT embryos and calves derived from somatic cells. Donor mitochondria were clearly observed by fluorescence labeling in the cytoplasm of NT embryos immediately after fusion; however, fluorescence diminished to undetectable levels at 24 hr after nuclear transfer. By PCR-mediated single-strand conformation polymorphism (PCR-SSCP) analysis, donor mtDNAs were not detected in the NT embryos immediately after fusion (less than 3-4%). In contrast, three of nine NT calves exhibited heteroplasmy with donor cell mtDNA populations ranging from 6 to 40%. These results provide the first evidence of a significant replicative advantage of donor mtDNAs to recipient mtDNAs during the course of embryogenesis in NT calves from somatic cells. 相似文献
5.
Remodeling of donor nuclei, DNA-synthesis, and ploidy of bovine cumulus cell nuclear transfer embryos: effect of activation protocol 总被引:1,自引:0,他引:1
Alberio R Brero A Motlík J Cremer T Wolf E Zakhartchenko V 《Molecular reproduction and development》2001,59(4):371-379
The purpose of this study was to investigate the effects of two activation protocols on nuclear remodeling, DNA synthesis during the first cell cycle, chromosome segregation after first mitosis and development to blastocyst of embryos produced by somatic nuclear transfer. Pronuclear formation was significantly higher when activation lasted 5 hr compared to 3 hr for both ethanol-cycloheximide and ionomycin-bohemine treatment. However, the presence of a single nucleus was significantly higher in embryos activated for 3 hr in bohemine. Initiation of DNA synthesis was delayed in ethanol-cycloheximide group, however, after 12 hr labeling 100% of embryos synthesized DNA in both groups. Embryos activated with ethanol-cycloheximide developed to blastocysts at a significantly higher rate than those activated with ionomycin-bohemine. Analysis of 2-cell embryos with DNA probes for chromosome 6, 7, and 15 by fluorescence in situ hybridization showed that at least 50% of NT embryos were of normal ploidy independent of the activation stimulus. The results presented in this study show differences between the protocols compared on the nuclear events during the first cell cycle and on the development to blastocyst. Mol. Reprod. Dev. 59: 371-379, 2001. 相似文献
6.
Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes 总被引:46,自引:1,他引:46
Chen Y He ZX Liu A Wang K Mao WW Chu JX Lu Y Fang ZF Shi YT Yang QZ Chen da Y Wang MK Li JS Huang SL Kong XY Shi YZ Wang ZQ Xia JH Long ZG Xue ZG Ding WX Sheng HZ 《Cell research》2003,13(4):251-263
To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and fi0 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of thedonor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PCR and immunocytochemistry with probes that distinguish between the various species. The ntES ceils maintainthe capability of sustained growth in an undifferen tiated state, and form embryoid bodies, which, on furtherinduction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that expressmarkers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NTto rabbit eggs retain phenotypes similar to those of conventional human ES ceils, including the ability toundergo multilineage cellular differentiation. 相似文献
7.
Generation of cloned goats (Capra hircus) from transfected foetal fibroblast cells, the effect of donor cell cycle. 总被引:6,自引:0,他引:6
Xiangang Zou Yuge Wang Yong Cheng Yuefei Yang Huiming Ju Huilin Tang Yu Shen Zongyao Mu Shaofu Xu Miao Du 《Molecular reproduction and development》2002,61(2):164-172
The neomycin-resistant gene (neo(r)) is probably the most commonly used selectable marker gene in gene targeting and gene transfection research. In this study, the neo(r) gene construct was introduced into in vitro cultured goat foetal fibroblast cells (IV-5), and the cells were selected with 900 microg/ml G418. The G418-resistant colonies were analysed by neo-specific PCR, karyotyping and anti-intermediate filament proteins antibody (anti-vimentin) staining. Cell cycle analysis of the neo(r) positive foetal fibroblast cell colony (IV-5.1) cultured in a variety of cell cycle-arresting medium indicated that 74.2% of cells cultured in serum-deprived medium for 3 days and 71.7% of cells grown to confluence were at G0/G1 stage of cell cycle, respectively, in comparison to 61.6% of cells in normal culture (cycling) medium. Nocodazole treatment for 17 hr in vitro culture could increase the number of cells at G2/M stage of cell cycle from 20.3% (in cycling medium) to 39.7%. In total, one early pregnancy was observed by B ultra-sound scanning in a surrogate transferred with cloned embryos from IV-5.1 cells at M stage (cells were cultured in nocodazole medium). Seven cloned goats, including two that miscarried at a late stage, were derived from the IV-5.1 cell clone cultured in starved medium (G0). Indeed, one surrogate receiving three blastocysts reconstituted from the starved donor cells, gave birth to three live cloned goats, all of which are healthy and doing well. PCR, Southern blot and G418 resistance in vitro of fibroblast cells from cloned goats confirmed that all cloned goats are positive for neo(r) transgene. This study demonstrates that a foreign gene, such as the neo-resistant gene, can be introduced into goat foetal fibroblast cells, and that the resulting transgenic cells are capable of being cloned to produce 100% transgenic animals. 相似文献
8.
We have compared the effect of the genetic background of recipient oocytes on the in vitro and in vivo development of nuclear transfer reconstructed embryos in goats. Adult fibroblast cells from Boer goats were used as donor cells, and recipient oocytes were obtained from Boer goats and Boer cross-breeds (Boer♂×Huanghuai♀). Nuclear transfer reconstructed embryos were cultured in vitro, or transferred into recipient goats. The mitochondrial origin of 2 cloned Boer goats was investigated by analysing the D-loop region based on polymorphisms via DNA sequencing. There was no significant difference in the fusion rate and cleavage rate of reconstructed embryos (P>0.05), when using Boer and cross-breeding goat oocytes as recipient cytoplast respectively. However, in vitro morula development of reconstructed embryos from Boer oocytes was significantly higher than that of cross-breeding embryos (34.1% versus 19.1%, P<0.05). There was no significant difference in the rate of pregnancy and foetus loss between the 2 breeds. However, the live-birth rate was significantly higher with Boer goat oocyte recipients than the cross-breeds (3.1% versus 0.8%, P<0.05). Mitochondrial analysis showed that the 2 cloned goats were similar to their respective oocyte donor goats, and significantly different from the nucleus donor. In conclusion, genetic background of recipient oocytes affected in vitro and in vivo development of reconstructed embryos, with the homologous background of cytoplast and nuclear donor benefiting development of reconstructed embryos. The mitochondrial origin of the 2 cloned Boer goats came from recipient oocytes, not donors. 相似文献
9.
Hiroyuki Horitsu Yotaro Higashi Mikio Tomoyeda 《Bioscience, biotechnology, and biochemistry》2013,77(5):933-940
Aspergillus niger NRC–A–1–233 was cultivated by the shaking method. The optimal cultural conditions for ribonuclease (RNase) production were: composition of medium: sucrose, 15%; NH4NO3, 0.2%; KH2PO4, 0.1%; MgSO4·7 aq., 0.025%; initial pH, 2.2; shaking conditions: 50 ml of medium /500 ml flask; cultivation time, 120 hr. The RNase was purified by acid clay treatment and chromatography on DEAE-cellulose and Sephadex G–75 columns. The purified RNase was homogeneous by ultracentrifuge and disc electrophoresis.The molecular weight of the RNase was estimated to be 28,500 on SDS-polyacrylamide gel and its isoelectric point was 2.8 by Ampholine electrofocusing method. Digestion rate of RNA by the RNase was 100%. The RNase did not have an exact base specificity and produced four kinds of 3′-nucleotides from yeast RNA. 相似文献
10.
Production of transgenic bovine embryos by transfer of transfected granulosa cells into enucleated oocytes 总被引:9,自引:0,他引:9
Arat S Rzucidlo SJ Gibbons J Miyoshi K Stice SL 《Molecular reproduction and development》2001,60(1):20-26
Adult granulosa donor cells used in the nuclear transfer (NT) procedure can result in cloned cattle. Subsequently, it may be possible to use the same cell type to produce cloned transgenic cattle. Therefore, this study examined the effect of genetic manipulation and serum levels in culture of donor granulosa cells on developmental rates and cell number of bovine NT embryos. A primary cell line was established from granulosa cells collected by aspirating ovarian follicles. Cells transfected with a plasmid containing the enhanced green fluorescence protein (EGFP) gene, and non-transfected cells were used for cloning between passage 10 and 15 as serum-starved and serum-fed donor cells. There were no significant differences (P > 0.1) in cleavage rates or development to the blastocyst stage for NT embryos from transfected (60.4 and 13.5%, respectively) or non-transfected (61.9 and 14.1%, respectively) and serum-starved (60.6 and 13.4%, respectively) or serum-fed (61.3 and 14%, respectively) cells. Development rates to blastocyst stage of embryos produced using cells at passage 15 (27.1%) were significantly higher than those produced with cells at passage 10,11, and 13 (7, 11.5, and 14%, respectively, P < 0.05). Green fluorescence was observed at different intensity levels in all blastocyst stage embryos resulting from transfected donor cells. The results of the present study indicated that genetically modified granulosa cells can be used to produce transgenic NT embryos and primary transgenic adult cells at late passage may be more effective donor cells than earlier passaged cells. 相似文献
11.
Vahid Mansouri Mohammad Salehi Mohsen Nourozian Fatemeh Fadaei Reza Mastery Farahani Abbas Piryaei Ali Delbari 《Genetics and molecular biology》2015,38(2):220-226
Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells. 相似文献
12.
BOU ShorGan 《中国科学:生命科学英文版》2009,52(4):390-397
In the present study, cashmere goat fetal fibroblasts were transfected with pCDsR-KI, a hair-follicle-cell specific expression vector for insulin-like growth factor 1 (IGF1) that contains two markers for selection (red fluorescent protein gene and neomycin resistant gene). The transgenic fibroblasts cell lines were obtained after G418 selection. Prior to the somatic cell nuclear transfer (SCNT), the maturation rate of caprine cumulus oocytes complexes (COCs) was optimized to an in vitro maturation time of 18 h. Parthenogenetic ooctyes were used as a model to investigate the effect of two activation methods, one with calcium ionophore IA23187 plus 6-DMAP and the other with ethanol plus 6-DMAP. The cleavage rates after 48 h were respectively 88.7% and 86.4%, with no significant difference (P>0.05). There was no significant difference between the cleavage rate and the blastocyst rate in two different media (SO-Faa and CR1aa; 86.3% vs 83.9%, P>0.05 and 23.1% vs 17.2%,P>0.05). The fusion rate of a 190 V/mm group (62.4%) was significantly higher than 130 V/mm (32.8%) and 200 V/mm (42.9%), groups (P<0.05). After transgenic somatic cell nuclear transfer (TSCNT) manipulation, 203 reconstructed embryos were obtained in which the cleavage rate after in vitro development (IVD) for 48 h was 79.3% (161/203). The blastocyst rate after IVD for 7 to 9 d was 15.3% (31/203). There were 17 embryos out of 31 strongly ex-pressing red fluorescence. Two of the red fluorescent blastocysts were randomly selected to identify transgene by polymerase chain reaction. Both were positive. These results showed that: (i) RFP and Neor genes were correctly expressed indicating that transgenic somatic cell lines and positive trans-genic embryos were obtained; (ii) one more selection at the blastocyst stage was necessary although the donor cells were transgenic positive, because only partially transgenic embryos expressing red fluorescence were obtained; and (iii) through TSCNT manipulation and optimization, transgenic cash-mere goat embryos expressing red fluorescence and containing an IGF1 expression cassette were obtained, which was sufficient for production of transgenic cashmere goats. 相似文献
13.
Li GP Bunch TD White KL Rickords L Liu Y Sessions BR 《Molecular reproduction and development》2006,73(4):446-451
The effects of cumulus cell removal and centrifugation of maturing bovine oocytes on nuclear maturation and subsequent embryo development after parthenogenetic activation and nuclear transfer were examined. Removal of cumulus cells at 4, 8, and 15 hr after in vitro maturation (IVM) or the centrifugation of denuded oocytes had no effect on maturation rates. Oocytes treated at 0 hr of IVM had a lower expulsion rate (50%) of the first polar body (PB1). The removal of cumulus cells and centrifugation affected the pattern of spindle microtubule distribution and division of chromosomes. There were almost no spindle microtubules allocated to PB1 and the spindles were swollen in anaphase I and telophase I oocytes. Approximately 20% of PB1 oocytes contained tripolar or multipolar spindles. After activation, oocytes denuded with or without centrifugation at 8 hr of IVM resulted in the lowest rate of development (3.0%). Denuded oocytes at 4, 15, and 24 hr of IVM with centrifugation or not resulted in similar blastocyst development rates (9.6%-13.2%). However, centrifugation of oocytes denuded at the beginning of IVM resulted in lower blastocyst development rate (8.1%, P < 0.05) than the noncentrifuged oocytes (17.3%). After nuclear transfer, the blastocyst development rates of oocytes denuded and centrifuged at 0, 4, and 8 hr of IVM were not different when compared to the same patch of noncentrifuged oocytes. However, oocytes denuded and centrifuged at 15 hr of IVM resulted in lower (P < 0.05) blastocyst development rates than the noncentrifuged oocytes. The results of this study suggest that removal of cumulus cells and centrifugation of denuded oocytes affect the spindle pattern. Embryo development of denuded and centrifuged oocytes may differ depending on the time of removal of cumulus cells. 相似文献
14.
Factors affecting the electrofusion of mouse and ferret oocytes with ferret somatic cells 总被引:3,自引:0,他引:3
The domestic ferret, Mustela putorius furos, holds great promise as a genetic model for human lung disease, provided that key technologies for somatic cell nuclear transfer (SCNT) are developed. In this report, we extend our understanding of SCNT in this species by defining conditions for efficient cell fusion by electrical pulse. Two experimental systems were employed in this study. First, in vivo-matured mouse oocytes and ferret somatic cells were used to establish general parameters for fusion. One fibroblast, or cumulus cell, was agglutinated to nucleate, zona pellucida-free, mouse oocytes, and subjected to an electrical pulse. Similar electrical pulse conditions were also tested with 1 or 2 somatic cells inserted into the perivitelline space (PVS) of intact mouse oocytes. The fusion rate for a single fibroblast with a zona-free oocyte was 80.2%, significantly higher (P < 0.05) than that observed for 1, or 2, fibroblasts placed in the PVS (52.0% and 63.8%, respectively). The fusion rate (44.1%) following insertion of two cumulus cells was significantly higher (P < 0.05) than that following insertion of one cumulus cell (25.1%). Second, in vitro-matured ferret oocytes were enucleated, and one to three fibroblasts or cumulus cells were inserted into the PVS. Zona pellucida-free ferret oocytes were fragile and excluded from the study. The fusion rates with two or three fibroblasts were 71.4% and 76.8%, respectively; significantly higher (P < 0.05) than that for one fibroblast (48.6%). This cell number-dependent difference in fusion efficiency was also observed with cumulus cells. Fusion-derived (ferret-ferret) NT embryos cleaved, formed blastocysts in vitro, and underwent early-stage fetal development following embryo transfer. The rate of development was cell type-independent, in contrast to the cell type-dependent differences observed in fusion efficiency. In conclusion, fibroblasts fused more efficiently than cumulus cells and the efficiency of single cell fusions was improved when two or more cells were inserted into the PVS. These studies define conditions for efficient cell fusion with ferret oocytes and should facilitate SCNT and the development of genetically defined animal models in this species. 相似文献
15.
GONG Guochun DAI Yunping FAN Baoliang Zhu Huabing WANG Haiping WANG Lili FANG Changge WAN Rong LIU Ying LI Rong LI Ning 《中国科学C辑(英文版)》2004,47(2)
The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 μg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker. 相似文献
16.
Ju B Pristyazhnyuk I Ladygina T Kinoshita M Ozato K Wakamatsu Y 《Development, growth & differentiation》2003,45(2):167-174
To develop nuclear transplantation techniques for the medaka Oryzias latipes, nuclei of cultured cells from transgenic fish were transplanted into unfertilized eggs of the orange-red variety of O. latipes, without enucleation, in two experimental series. In the first experimental series, fibroblast cells cultured from the adult caudal fin were used as donors, which carried the green fluorescent protein (GFP) gene driven by the promoter of the medaka elongation factor 1alpha-A gene. Wild-type body color was another donor genetic marker used in this experimental series. In the second experimental series, cells cultured from 6-day-old embryos were used as donors, which carried the GFP genetic marker driven by the promoter of the medaka beta-actin gene. From more than 1000 eggs transplanted in each experiment, a considerable number of nuclear transplants developed to various embryonic stages showing stage- and tissue-specific expression of the donor genetic markers, although the expression was mosaic in many cases. Three and six of the transplanted eggs in the first and second experimental series (0.3 and 0.5%, respectively) hatched, and the hatchlings expressing the genetic markers survived for up to 3 weeks. The chromosome number varied among cells in a single transplant embryo. The results obtained in these experiments may help future cloning efforts in fish. 相似文献
17.
Production of transgenic blastocyst by nuclear transfer from different types of somatic cells in cattle 总被引:5,自引:0,他引:5
GONG Guochun DAI Yunping FAN Baoliang ZHU Huabing WANG Haiping WANG Lili FANG Changge WAN Rong LIU Ying LI Rong & LI Ning . State Key Laboratory for Agrobiotechnology China Agricultural University Beijing China . Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China . Gentitan Biotechnology Ltd. Beijing China 《中国科学:生命科学英文版》2004,47(2):183-189
Genetically modified animals have many poten-tial applications in basic research, human medicine and agriculture. Pronuclear DNA microinjection has been almost the only practical means of producing transgenic animals during the last 20 years, but the low efficiency (1%—5%)[1] of this method has actu-ally been the obstacle that hampered its further appli-cation in animal biotechnology. The birth of Dolly[2], the first somatically cloned animal, made it possible to produce transgenic animals b… 相似文献
18.
Bai Z Yong J Qing T Cheng J Shen W Ding M Deng H 《Molecular reproduction and development》2007,74(5):560-567
Germinal vesicle (GV) oocytes matured in vitro are an alternative source for cytoplasmic recipients of nuclear transfer (NT). However, the developmental potential of oocytes matured in vitro is limited. In this study, we developed a protein-free maturation medium for mouse GV oocytes. Following parthenogenetic activation, the oocytes matured in the protein-free medium develop to blastocyst stage with a high efficiency, even up to the rate obtained from in vivo MII-oocytes (90.6% vs. 92.8%). Using the oocytes matured in the protein-free medium as the recipient, NT embryos develop to the blastocyst stage (17.6%). To further improve the developmental potential of NT embryos, we performed serial NT and compared the effect of three different activated cytoplasm samples derived from in vitro matured oocytes as the second recipient, that is, the effect of in vitro fertilized (IVF) zygote, the preactivated cytoplast and the IVF cytoplast, on the development of NT embryos. We found that when the pronucleus of NT zygote was transferred into the cytoplasm of the IVF zygote, the blastocyst formation increased to 39.4%. This is the first report to demonstrate the IVF zygote from oocytes matured in protein-free medium can be used successfully as the recipient for serial NT to enhance the developmental potential of mouse NT embryos from oocytes matured in the protein-free medium. 相似文献
19.
Summary This study reconstructed heterogeneous embryos using camel skin fibroblast cells as donor karyoplasts and the bovine oocytes
as recipient cytoplasts to investigate the reprogramming of camel somatic cell nuclei in bovine oocyte cytoplasm and the developmental
potential of the reconstructed embryos. Serum-starved skin fibroblast cells, obtained from adult camel, were electrically
fused into enucleated bovine metaphase II (MII) oocytes that were matured in vitro. The fused eggs were activated by Inomycin
with 2 mM/ml 6-dimethylaminopurine. The activated reconstructed embryos were cocultured with bovine cumulus cells in synthetic oviduct
fluid supplemented with amino acid (SOFaa) and 10% fetal calf serum for 168 h. Results showed that 53% of the injected oocytes
were successfully fused, 34% of the fused eggs underwent the first egg cleavage, and 100% of them developed to four- or 16-cell
embryo stages. The first completed cleavage of xenonuclear transfer camel embryos occurred between 22 and 48 h following activation.
This study demonstrated that the reconstructed embryos underwent the first embryonic division and that the reprogramming of
camel fibroblast nuclei can be initiated in enucleated bovine MII oocytes. 相似文献
20.
Cheong HT Park KW Im GS Lai L Sun QY Day BN Prather RS 《Molecular reproduction and development》2002,61(4):488-492
The present study examined the effect of elevated Ca(2+) concentration in fusion/activation medium on the fusion and development of fetal fibroblast nuclear transfer (NT) porcine embryos. Frozen-thawed and serum starved fetal fibroblasts were transferred into the perivitelline space of enucleated oocytes. Cell fusion and activation were induced simultaneously with electric pulses in 0.3 M mannitol-based medium containing 0.1 or 1.0 mM CaCl(2). Some fused embryos were further activated 1 hr after the fusion treatment by exposure to an electric pulse. The NT embryos were cultured in vitro for 6 days. Fusion and blastocyst formation rates were significantly (P<0.05) increased by increasing the Ca(2+) concentration from 0.1 mM (67.1 and 6.3%) to 1.0 mM (84.7 and 15.8%). However, no difference in the number of cells in blastocysts was observed between the two groups. A higher percentage of blastocyst was also observed when control oocytes were parthenogenetically activated in the presence of elevated Ca(2+) (19.3% vs. 32.4%, P<0.05). When the reconstituted oocytes were fused in the medium containing 1.0 mM CaCl(2), increasing the number of pulses from 2 to 3 or an additional activation treatment did not enhance the blastocyst formation rate or cell number in blastocysts. These results demonstrate that increasing the Ca(2+) concentration in the fusion/activation medium can enhance the fusion and blastocyst formation rates of fetal fibroblast NT porcine embryos without an additional activation treatment. 相似文献