首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and metabolic activity of underground shoots of a long-rhizome perennial herbaceous species yarrow (Achillea millefolium L.) were studied. The active growth of rhizomes and the formation of new meristematic zones were observed during the second half of the growing season after termination of aboveground shoot growth. In this period, underground shoots had a rather high rate of respiration (1.3 mg CO2/(g dry wt h)), a considerable content of nonstructural carbohydrates (15% of dry weight), and the elevated activities of IAA, cytokinins, and ABA. In autumn, the rate of respiration of underground shoots decreased to 1.0 mg CO2/(g dry wt h), soluble sugars accumulated, the ratio between unsaturated and saturated fatty acids rose as well as the ratios GA/ABA and cytokinins/ABA. Temperature optimum for the rhizome growth lay in the range of low and moderate above-zero temperatures (5–20°C), and the freezing point of water in the apices of under-ground shoots was about ?10°C. It is concluded that rhizome quiescence predominantly depends on low temperatures and is not associated with the accumulation of growth inhibitors. In the course of plant preparation to winter, morphogenetic transformations in underground shoots depend on changes in the hormonal balance directed in favor of growth hormones and relatively high respiratory activity in the apical zones of the rhizomes.  相似文献   

2.
Morphophysiological characteristics of rhizomes and growth relationships between underground shoots and aboveground orthotropic shoots were studied in two species of perennial monocotyledonous plants—Hungarian brome (Bromopsis inermis (Leyss.) Holub.) and reed canary-grass (Phalaroides arundinacea (L.) Rauschert.). The underground metameric complex was shown to be comparable with the aerial shoots in terms of the number, biomass, and metabolic activity of the shoots. The role of the underground metameric complex in the source-sink system of perennial rhizome-forming cereals is determined by a significant proportion of rhizomes in plant biomass (30–50%), formation of a large amount of meristems in the underground stock of vegetative reproduction (more than 1000 per plant), a comparatively high respiration rate (1.5 mg CO2/(g dry wt h)), and a high nitrogen content (3.5%). No pronounced growth response was found in the rhizome upon plant treatment with growth regulators (GA and chlorocholine chloride) and upon decapitation of plant shoots. It is concluded that the underground metameric complex of the perennial monocotyledonous herbaceous plants is relatively autonomous from the orthotropic shoots.  相似文献   

3.
为了研究高原亚寒带沙化生境中切断根茎对克隆植物基株扩展能力和分株定居能力的影响,在川西北若尔盖高原沙化区内,对根茎禾草赖草和沙生苔草进行了以切断根茎为处理的野外实验。结果表明,赖草和沙生苔草基株的幼小部分(观测单元)地上枝总长度增量、主根茎长度增量和根茎总长度增量显著减少,而对根茎数增量、主根茎节增量和根茎节总数增量影响不显著;赖草观测单元地上枝数增量显著减少,而对沙生苔草地上枝数增量无影响;赖草地上枝与根茎的相关性质发生逆转。这表明.在高原亚寒带半湿润沙化生境中.克隆整合效应显著促进基株幼小部分地上枝和根茎的伸长生长,但对新生根茎的产生和根茎节分化没有影响;切断根茎处理导致赖草、沙生苔草生殖生长与营养生长间竞争加剧,同时使赖草地上部分与地下部分间竞争加剧;观测单元在缺少与基株(或上级株系)的克隆整合作用时,赖草受到的影响大于沙生苔草。  相似文献   

4.
Variations in the height, shoot density, biomasses of above- and below-ground parts and rhizome distributions ofPhragmites australis were investigated along a line-transect in a reed community at Yufutsu Mire, Hokkaido. Relationships of performance of the reed plants to soil conditions and species compositions were also examined. Three types of rhizome development were recognized in reed plants; (1) the central part of the reed community, characterized by well developed rhizomes and dense aerial shoots, (2) the intermediate part, characterized by development of rhizomes along both the peat and surface layers and very dense aerial shoots, and (3) the marginal part, characterized by development of rhizomes only along the peat layer and sparse aerial shoots. Observation showed that rhizomes in the surface layer actively produced aerial shoots, whereas rhizomes in the peat layer contributed to the spreading of their distribution range. With the growth of rhizomes, organic debris originating from dead rhizomes and roots accumulated in the mineral soil to promote organic soil formation. In dense parts of the reed stand, species composition was poor because of the shading and litter accumulation by reed plants. The effects of microtopography and water level on the establishment of reed seedlings were also considered.  相似文献   

5.
The manner in which the density of Leymus chinensis increases from a single plant to a dominant population can be understood by tracing the development of a population from early to late stages. Parent shoot density, above‐ground dry weight, spike density, heading rate and spike dry weight, density of spreading shoots (buds/daughter shoots in apical/axillary rhizomes) and clumping shoots (buds/daughter shoots in axillary parent shoots), and young rhizome length and weight were investigated in the same quadrats for a low density/early stage (LE) population and a high density/late stage (HL) population. Clonal growth (buds/daughter shoots formation) and sexual reproduction (spikes formation) increased while rhizome storage (young rhizome weight) decreased during the transition from LE to HL. In a LE population an outward occupation strategy was employed, with a high proportion of spreading shoots. As the population density gradually increased until HL, an inward consolidation strategy increasing shoot amount in previously occupied areas, was adopted. This was characterized by a high proportion of clumping shoots. Interestingly, the trade‐off between spreading and clumping shoots can be adjusted by the duration of young rhizome elongation during a growth season. In other words, compared with a HL population, a LE population shortened the duration of young rhizome elongation during the growth season, which resulted in more time for the production of axillary spreading shoots along the rhizomes, and high amounts and proportions of total spreading shoots. The special growth patterns, that is, trade‐offs among growth forms, allow L. chinensis to establish dominant populations throughout the eastern Eurasian Steppe.  相似文献   

6.
Age-specific seasonal rhizome storage dynamics of a wetland stand of Phragmites australis (Cav.) Trin. ex Steud. in Japan, were investigated from April to October 2000. For each sampling date, above- and below-ground biomass and age-specific rhizome bulk density, ?rhiz were measured. Seven rhizome age classes were recognized, from <1 year to six years old, based on their position within the branching hierarchy as main criteria and rhizome color, condition of nodal sheaths and condition of the shoots attached to vertical rhizomes as secondary criteria. P. australis stand was moderately productive, having a net aerial and below-ground production of 1980 and 1240 g m?2, respectively, and a maximum mean shoot height of 2.33 ± 0.12 m. In spring, shoot growth started at the expense of rhizome reserves, decreasing the rhizome biomass as well as ?rhiz. Both parameters reached the seasonal minimum in May followed by a subsequent increase, indicating a translocation of reserves to rhizomes from shoots after they become self supporting. For each sampling date, ?rhiz increased with rhizome age. Given that the quantity of reserves remobilized by the rhizomes for spring shoot growth, as assessed by the drop in bulk density from April to May, were positively correlated (r = 0.97, P < 0.05) with rhizome age, it is proposed that for spring shoot formation older rhizomes remobilize stored reserves more actively than younger ones. Given that the accumulation of rhizome reserves (rise in bulk density) from May to August, May to September or May to November was negatively correlated (r = 0.97, 0.92 and 0.87, respectively, P < 0.05) with rhizome age, it seemed possible that younger rhizomes were ‘recharged’ at a higher rate than older ones. These resource allocation mechanisms pertaining seasonal rhizome storage dynamics are of paramount importance in formulating management and conservation strategies of wetlands and aquatic habitats. Our results indicate that a harvest of above-ground biomass from May to June would be more effective in reducing the growth than a harvest in July to August or later, when rhizome reserves have already been replenished. However, the latter may remove a larger shoot bound nutrient stock, still preserving a healthy stand for the subsequent years.  相似文献   

7.
Epipactis helleborine (L.) Crantz (Orchidaceae, Neottieae) can spread by sexual or vegetative propagation. The choice of strategy likely depends on the environmental conditions. The rhizome is the organ of vegetative reproduction; hence, it is crucial to understand its development. Unfortunately, it is hardly possible to investigate rhizome morphology directly, since E. helleborine is a protected species in most European countries. The goal of our investigation was to infer the growth patterns of underground parts of an orchid population from long-term annual observations of its aboveground shoots. We implemented the Minimum Spanning Tree method to determine a likely set of underground connections between shoots and to simulate the annual growth of new rhizomes. Furthermore, we modelled the spatial distribution of shoots with a density kernel estimator to compare the density gradients with the direction of growth of the rhizomes. Observed shoot numbers fluctuated between 72 and 183 from year to year. Our results suggest that (1) vegetative reproduction prevails in the studied population, (2) the population consists of about a dozen clones with a diameter of up to 6 m, (3) rhizomes produce up to five new shoots at one branch end per year, (4) rhizomes develop in the direction of decreasing population density, and (5) nodes of rhizomes may produce new offshoots after up to 7 years of dormancy.  相似文献   

8.
Plant architecture and phenotypic plasticity under natural conditions remain little known for many rhizomatous species. This study evaluates, in situ, the plastic responses of Alstroemeria aurea plants from three Patagonian populations to flower or flowering-shoot removal. The size and architecture of treated and untreated plants were assessed. Nutrient contents (N, P and K) were evaluated for rhizomes and roots developed in two successive years. Those plants that were deprived of their inflorescences developed, on average, a heavier rhizome than both control plants and plants from which flowering shoots had been removed. Neither of the two treatments applied altered the number of metamers or the branching pattern of the rhizomes. The contents of N, P and K were higher in rhizomes than in roots. In summer, nutrients were more concentrated in inflorescences and the new rhizome segment than in the rhizome segment developed in the previous year. The idea that fruiting failure in A. aurea promotes resource re-assignment from aerial shoots to rhizomes without altering the architecture of plants is supported. The development of the underground portion of aerial shoots in late summer-autumn allows A. aurea plants to take full advantage of short growth periods, but would impose a limit to plasticity.  相似文献   

9.
Ming Dong  Bao Alaten 《Plant Ecology》1999,141(1-2):53-58
In a field experiment, Psammochloa villosa plants were subjected to rhizome severing. Severing rhizomes reduced growth in the young, detached rhizome segments compared to the controls in terms of all measured clonal growth-related characters, i.e. number of rhizomes and shoots, total rhizome length and total number of rhizome nodes. In a container experiment, the control ramets received uniform water and nutrient supply but in heterogeneous treatments high and low levels of water and nutrient supply, respectively were established. The number of ramets, total rhizome length, dry weight per ramet and biomass allocation to the rhizome had higher values at high water and nutrient supply, while spacer length (length of rhizome between shoots) and rhizome internode length were not affected. The local response of ramets given low water supply was enhanced due to connection to a well watered parent ramet in terms of number of ramets, total rhizome length and dry weight per ramet. A remote effect was not observed in the other treatments or in the other measured characters.  相似文献   

10.
Fine-scale dynamics of rhizomes in a grassland community   总被引:3,自引:0,他引:3  
Spatial dynamics in grassland communities are constrained by the belowground spatial distribution of roots and rhizomes. Their dynamics are difficult to measure as underground data collection tends to be destructive and cannot be repeated at the same plot over time. We investigated rhizome dynamics indirectly by examining rhizome spatial structure on long‐term grassland study plots where aboveground shoot counts have been recorded using a fine‐scale grid over nine years. Number of rhizome apical ends, basal ends and total rhizome length of both live and dead rhizomes were obtained from the data by scanning rhizomes and processing them by GIS vectorization. These rhizome variables were correlated with the above‐ground shoot counts in grid cells over varying temporal lags. There was a general decrease in the intensity of correlation between live rhizomes and shoot counts with increasing time lags. Correlation of dead rhizomes increased with increasing time lag, reaching a maximum after several years, and then declined. Species differed strongly in the change of rhizome‐shoot counts correlation over varying time lags. These differences were used to infer rhizome growth dynamics, namely rhizome growth rate and lifespan, and rhizome mean decomposition time. The species involved differed in all these traits. Mean rhizome growth rate ranged from 0.2 (Polygonum bistorta) to 3.3 cm ur?1 (Deschampsia flexuosa); mean rhizome lifespan ranged from 5 yr (Anthoxanthum alpinum) to over 8 yr (Nardus stricta) and mean decomposition time from one growing season (Anthoxanthum) to 7 yr (Polygonum). Presence of dead rhizomes below living rhizomes or aboveground shoots was taken as an indication of fine‐scale replacements between species. These were highly non‐random, with some species pairs replacing significantly more frequently. These differences in rhizome growth parameters underlie different strategies of horizontal growth and dieback between species. These can serve as one of the mechanisms of species replacements and contribute to the fine‐scale coexistence of species.  相似文献   

11.
Histochemical determinations for storage of carbohydrates in rhizomes, roots, and young shoots of Typha latifolia L. (Typhaceae) were conducted during the overwintering period from November to April. Early winter analysis showed that rhizomes and roots contained large amounts of starch (45.03% and 22.80% dry weight, respectively). The major storage tissue was parenchyma of the rhizome central core. From winter into spring a gradual decrease in storage starch in the rhizome and root occurred concurrently with starch accumulation near zones of rapid development in young shoots (buds), but the rhizome retained much starch (27.40% dry weight) into the start of its 2nd yr.  相似文献   

12.
The present paper sums up the knowledge obtained from the study of growth periodicity in the underground organs ofPhragmites communis Trin. and from the analyses of differentPhragmites stands in three regions of Czechoslovakia. A period of intense growth ofPhragmites rhizomes was recorded in summer. Spring (end of April and beginning of May) and autumn (mainly September) seem to be the periods of most active root growth. During July and August, accumulation of reserve material takes place both in new and old rhizomes. In the stands investigated, the biomass ofPhragmites rhizomes varied from 2 kg/m2 to 5 kg/m2, and root dry weight from 0.08 kg/m2 to 3.6 kg/m2. The ratio of underground to total aboveground dry weight was highly variable (1.0 to 9.9). The estimated annual net rhizome production ofPhragmites, in two different stand, was 30% (?akvický fishpond) and 60% (Nesyt fishpond) of the seasonal maximum above-ground biomass.  相似文献   

13.
The excised stem-tips of the germinating tubers of Stachys sieboldii Miq. were cultivated under the laboratory condition. As the room temperature decreased, the formation of tubercles on the tips of the explanted stems was observed. The excised tips of the rhizome at its different stages of development, when cultured in vitro, demonstrated variations in tuber formation. When the excised tips were taken from the rhizomes which had just emerged from the base of the aerial shoots, they usually failed to grow. However, existence of normal growth was observed in the cultured excised tips of the rhizomes that had become elongated at which time flowering occurred on the aerial shoot. The tips became swollen as the environmental temperature decreased. In early September, as the process of underground tuberization initiated, cultures taken from the nontuberized tips again grew poorly and usually failed to form tubercles.  相似文献   

14.
The growth of three populations of greater lotus (Lotus uliginosusSchkuhrsyn.L. pedunculatusCav.) was compared at photoperiods of 10,12 and 14 h at a maximum day/minimum night temperature of 21/16°C and at maximum day/minimum night temperatures of 27/22,21/16, 18/13 and 15/10 °C at a photoperiod of 12 h. Shortdays (10 h) favoured root and rhizome development compared tolong days (14 h). A temperature regime of 15/10 °C restrictedrhizome development compared to the 18/13 and 21/16 °C regimes.Shoot growth was restricted at the highest temperature regime(27/22 °C). The cultivar Sharnae had fewer, but heavier,rhizomes than Grasslands Maku; this may indicate adaptationto the dry summers at its site of origin (Algarve, Portugal).The response of rhizome growth to temperature and photoperiodexplains part of the performance of greater lotus in the fieldat a wide range of latitudes. Grazing management to encouragethe persistence ofL. uliginosusin pasture in temperate environmentsmay include the exclusion of grazing livestock in autumn. Inthe sub-tropics, monitoring of rhizome production in the fieldwould be required before deciding the appropriate time intervalbetween grazing.Copyright 1998 Annals of Botany Company Lotus uliginosus(Schkuhr); greater lotus; temperature; daylength; shoots; roots; rhizomes.  相似文献   

15.
An efficient protocol has been devised for the propagation and field establishment of Eulophia cullenii (Wight) Bl., a terrestrial orchid having ornamental potentialities, and is critically endangered in Western Ghats, India. Seeds extracted from 60–90-d-old capsules germinated in ½ MS, ¼ MS, Knudson C, or Mitra liquid medium developed into 1.4–2.5-mm-diameter protocorms in 60 d. Supplementation of organic additives like coconut water, peptone, yeast extract, and casein acid hydrolysate (CH) significantly enhanced protocorm growth. Upon subculture onto agar-gelled Mitra medium fortified with 0.05% CH, 56% of protocorms regenerated into shoots through the formation of linear mini-rhizomes. The regenerated shoots grew vigorously in ½ MS, producing new rhizomes. Mature rhizomes from axenic seedlings produced maximum (13?±?1.4) shoots/whole rhizome in ½ MS fortified with 44.4 μM 6-benzylaminopurine (BAP), in 120–150 d. Horizontal and longitudinal halves of the rhizome also gave multiple shoots (6–8.5) in the presence of 44.4 μM BAP. Shoots or shoot clumps sub-cultured onto ½ MS basal medium produced roots followed by rhizomes in 60–150 d. Seedlings with mature rhizomes showed 70% establishment in the nursery and added a new rhizome at the end of one growth cycle. An average of 70.6% of the rhizomes originating from seedlings during the second growth cycle sprouted to produce new shoots, when planted in the native localities. Asymbiotic germination and cloning through rhizomes thus can provide a large number of vigorous plants of E. cullenii for ornamental exploitation as well as eco-restoration, if rhizome as storage organ is ensured in the propagule.  相似文献   

16.
We studied the seasonal resource dynamics between organs of wild rice (Zizania latifolia (Griseb.) Turcz. ex Stapf.) to obtain a better understanding of its growth dynamics, carbon and nutrient translocation. The results of observation from January 2002 to February 2004 showed the shoot density markedly increased after emergence of shoots at the end of March until May (up to 800 ind/m2). However the shoot mortality due to self-thinning reduced the total new shoots by more than 70% by the end of July. Thereafter, the shoot density was nearly constant with the aboveground biomass peaking at the end of August. In the late winter, the rhizome biomass declined by respiration loss to about 25% of its peak value. Meanwhile the decline in rhizome reserves from January to the end of April was about 20%. This small reduction compared with other perennial emergent species implies that there is a lower contribution of rhizome reserves to support new shoot formation. The initial heterotrophic growth of new shoots based on the rhizome resources lasted for a short period, then switched to autotrophic growth at the end of April or the beginning of May. Thus, in most periods of foliage development, nutrients were obtained mostly from soil through uptake by roots, not through resource allocation of the rhizome. In autumn, the standing dead shoots retained most of the nutrients and carbohydrates without translocating downwards. This suggests that in practice, the plant can remove nutrients from sediment more efficiently than other emergent plants.  相似文献   

17.
Bamboos represent one of the world’s great natural and renewable resources. The study reports precocious rhizome formation in multiple shoots of elite, rare, woody bamboo Bambusa bambos var. gigantea. Multiple shoots were initiated from embryonic axes of caryopses inoculated on MS-basal medium supplemented with 5.0 μM BAP and 2% sucrose. Transfer of shoots to MS basal medium supplemented with BAP (2.5 μM, 5.0 μM), GA3 (0.1 μM) and NAA (50.0 μM) and 5% sucrose led to 58% to 100% rhizome induction within four weeks of culture. Subsequently, these rhizomes developed roots on auxin media and formed culm shoots showing regeneration of plantlets after eight weeks. Incorporation of TIBA inhibited rhizome formation. The plantlets with rhizomes were transferred to soil. Precocious rhizome formation will lead to early establishment besides providing propagules on demand and mass multiplication of bamboos through rhizome banks.  相似文献   

18.
Qing  Liu  Yunxiang  Li  Zhangcheng  Zhong 《Plant Ecology》2004,173(1):107-113
The effects of moisture availability on clonal growth and biomass investment in the bamboo Pleioblastus maculata were investigated over a four-year period by transplanting Pleioblastus maculata clones into soils with different levels of moisture availability in the field. The results showed that: (1) The higher the moisture availability, the greater the total biomass of P. maculata clones. Although fewer culms are produced at the higher moisture levels, mean tiller biomass is greater. (2) Under different levels of moisture availability, obvious differences in the total rhizome length (p < 0.01), spacer length (p < 0.05) and the sizes of bamboo culms (height, p < 0.01; diameter, p < 0.01) were observed. Thus, the higher the moisture availability, the shorter the rhizomes and the larger ramets. (3) In microhabitats with low moisture availability, bamboo allocated more biomass to underground organs, which promotes elongation of rhizomes and increases root production, thereby helping to capture underground resources essential to growth. In microhabitats of high moisture availability, the biomass is primarily allocated to the aboveground growth of ramets. (4) We suggest that soil moisture availability effects the foraging strategies of bamboo, that bamboo plants growing with low moisture availability produce longer rhizomes (that is, more, although shorter, spacers) with more biomass allocation than plants in high moisture and have a better ability to forage to increase the probability of locating adequate moisture patches. Also, longer length distance between shoots (that is, longer spacers) in high soil moisture than in low is adapted to avoid intense competition from faster growing aboveground growth in high moisture patches.  相似文献   

19.
In the last century, Phragmites australis (common reed) has expanded from a minor component of the mid-Atlantic tidal wetlands to a dominant species in many locations. Expansion of Phragmites results in decreased plant diversity and alterations to the tidal characteristics of the marsh, resulting in decreased wetland value. Management efforts have used a variety of strategies in an attempt to control its expansion. We tested a greenhouse bioassay that provided insight into the rhizome vitality of six herbicide-treated sites in the Alloway Creek Watershed, NJ well in advance of the growing season. At three sites, rhizomes were exhumed and classified by depth (0–25 cm and 25–75 cm) and appearance (color and firmness). Concurrently, the same protocol was followed, but conducted on an areal basis at three additional sites. Material was grown in sand under greenhouse conditions void of nutrient supplements for 70 days, after which shoots were removed and the rhizomes replanted for 30 days. Effectiveness of control strategies was quantified by examining rhizome color, vitality, and shoot densities in the field. Color was indicative of quality of rhizome reserves. Less than 0.2% of the firm, brown rhizomes produced shoots upon initial planting and none produced shoots upon replanting, whereas 50.9% of white rhizomes produced shoots on initial planting. Rhizome vitality was quantified by examining shoot emergence and the morphology of the shoots. Coupling rhizome vitality with observed field densities resulted in a predictive capability, and shoot density and biomass predictions were compared to field measurements in July 2001. We tested and accurately predicted the relative shoot densities and shoot biomass of the three sites for which we collected rhizome material on an areal basis. The result is a rapid, valuable, and cost-effective monitoring tool that can quickly quantify the effects of past control methods and predict future growth potential.  相似文献   

20.
Alstroemeria is multiplied in vitro by forced outgrowth of lateral rhizomes from rhizome explants. The multiplication rate is very low because of strong apical dominance and poor rhizome growth. We report here that moderate abiotic stresses stimulate both rhizome growth and outgrowth of lateral rhizomes, and accordingly increase multiplication. Rhizome explants were exposed to heat by a hot-water treatment (HWT) or by a hot-air treatment. Both increased rhizome growth when applied for 1 or 2?h in the range of 30?C40?°C. The maximal enhancement was 75?%. Other abiotic stresses were also examined. Cold (0?°C) and partial anaerobiosis increased rhizome growth significantly. The increases brought about by drought and salinity were not statistically significant. Because underground storage tissues like rhizomes are adaptations to survive climatic stresses, we presume that the increased sink-strength of rhizomes induced by moderate stress is related to stress adaptation. Moderate heat stress (38?°C HWT, 1?h) also resulted in protection of Alstroemeria plantlets from severe heat stress (45?°C HWT, 1?C2?h) a few hours after the moderate stress. All abiotic stresses also increased the outgrowth of lateral rhizomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号