共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced carbon produced in mature leaves is distributed throughout plants in the form of sucrose. Sucrose transporter proteins (SUT) play a crucial role in transporting sucrose. We isolated a cDNA encoding a sucrose transporter, GmSUT1, which is expressed in the developing cotyledons of soybean (Glycine max). [14C]sucrose uptake assays demonstrate that GmSUT1 has a K(m) of 5.6mM and a V(max) of 5.8 nmol sucrose min(-1)(mg cells)(-1), which are similar to those of the low-affinity-high-capacity sucrose transporter family. GmSUT1 protein accumulates gradually during cotyledon development, correlating with increasing sucrose levels in the maturing cotyledons. Collectively, these data suggest that GmSUT1 plays an active role in the movement of sucrose into the developing seeds. 相似文献
2.
Sugar and amino acid transport into empty ovules of Pisum sativum L. cv. Marzia was examined. In fruits containing 4–6 developing seeds, the embryo was removed from four ovules. After this surgical treatment, each empty seed coat was filled with a solution (pH 5.5) containing a low (0, 50 or 200 m M ), medium (350, 400 or 500 m M ) or high (0.7 or 1 M ) concentration of sucrose and/or mannitol. In pulse-labelling experiments with sucrose and α-aminoisobutyric acid (AIB), transport of sucrose and AIB into an empty ovule filled with a solution containing a high sucrose concentration was the same as transport into an ovule filled with a mannitol solution of similar osmolarity, demonstrating that a high sucrose concentration in the seed coat apoplast affects phloem transport of sucrose and AIB into the seed coat only by the osmotic effect. The osmolarity of a given solution filling the seed coat cavity appeared to be important for phloem transport of sucrose and AIB into empty ovules.
In our experiments, 350 m M appeared to be the optimal concentration for sucrose and AIB transport into the cavity within an empty ovule, giving results comparable with transport into intact ovules. A lower osmolarity of the solution induced less transport. Very high sucrose or mannitol concentrations caused a strong inhibition of sucrose and AIB unloading from the seed coat, so that transport into the empty ovules was inhibited. A low (strongly negative) but not too low osmotic potential of the solution in the seed coat apoplast seems necessary to maintain a normal rate of phloem transport into developing seeds. Apparently, the "sink strength" of developing seeds is turgor-sensitive. 相似文献
In our experiments, 350 m M appeared to be the optimal concentration for sucrose and AIB transport into the cavity within an empty ovule, giving results comparable with transport into intact ovules. A lower osmolarity of the solution induced less transport. Very high sucrose or mannitol concentrations caused a strong inhibition of sucrose and AIB unloading from the seed coat, so that transport into the empty ovules was inhibited. A low (strongly negative) but not too low osmotic potential of the solution in the seed coat apoplast seems necessary to maintain a normal rate of phloem transport into developing seeds. Apparently, the "sink strength" of developing seeds is turgor-sensitive. 相似文献
3.
Uptake of 14C-labelled sucrose and glucose by isolated seed coat halves of pea (Pisum sativum L. cv. Marzia) seeds was measured in the concentration range <0.1 μM to 100 mM. The initial influx of sucrose was strictly proportional to the external concentration, with a coefficient of proportionality (k) of 6.2 μmol·(g FW)?1·min?1·M?1. Sucrose influx was not affected by 10 μM carbonylcyanide m-chlorophenylhydrazone (CCCP), but it was inhibited by 40% in the presence of 2.5 mM p-chloromercuribenzenesulfonic acid (PCMBS). Influx with diffusional kinetics was also observed for glucose (k = 4.8 μmol·(g FW)?1·min ?1·M ?1) and mannitol (k = 5.1 μmol·(g FW)?1·min?1·M?1). For glucose an additional saturable system was found (Km = 0.26 mM, V max = 4.2 nmol·(g FW)?1·min?1), which appeared to be completely inhibited by CCCP and partly by PCMBS. In contrast to the diffusional pathway, uptake by this saturable system was slightly pH-dependent, with an optimum at pH 5.5. The influx of sucrose appears to be by the same pathway as the efflux of endogenous sucrose, which was inhibited by 36% in the presence of 2.5 mM PCMBS (De Jong A, Wolswinkel P, 1995, Physiol Plant 94: 78–86). It is argued that passive transport may be the only mechanism for sucrose transport through the plasma membrane of seed coat parenchyma cells. The estimated permeability coefficient of the plasma membrane for sucrose (P = 3.5·10?7 cm·s?1) is more than 1 × 106-fold higher than that reported for artificial lipid membranes. This relatively high permeability is hypothesized to result from pore-forming proteins that allow the diffusion of sucrose. Furthermore, it is shown that a sucrose gradient across the plasma membrane of the seed coat parenchyma of only 22 mM will suffice to result in the net efflux of sucrose which is required to feed the embryo. 相似文献
4.
5.
This paper discusses the question as to whether or not the seed coat tissues can‘adapt’to a treatment with a solution containing a low osmoticum concentration, representing an environment which is sub-optimal for assimilate transport into attached surgically modified ovules. Before the start of a pulse-labelling procedure, in experiments on [14C] sucrose transport into fruits of pea (Pisum sativum) with four empty ovules, two empty ovules were filled with a low-osmolality solution (a 200 mol m?3 mannitol medium or a solution without mannitol) and the other two ovules were filled with a 400 mol m?3 mannitol medium. Pretreatment with a low-osmolality medium, during a period of 2–3 h, enhanced subsequent transport of [14C] sucrose into empty ovules filled with a low-osmolality medium, in comparison with [14C] sucrose transport into empty ovules filled with a 400mol m?3 mannitol medium during the pretreatment period. This partial recovery of sink strength of attached empty ovules can be explained as the result of a stimulation of solute efflux from seed coat cells at high cell turgor. 相似文献
6.
Van Dongen JT Ammerlaan AM Wouterlood M Van Aelst AC Borstlap AC 《Annals of botany》2003,91(6):729-737
An important function of the seed coat is to deliver nutrients to the embryo. To relate this function to anatomical characteristics, the developing seed coat of pea (Pisum sativum L.) was examined by light- and cryo-scanning electron microscopy (cryo-SEM) from the late pre-storage phase until the end of seed filling. During this time the apparently undifferentiated seed coat tissues evolve into the epidermal macrosclereids, the hypodermal hourglass cells, chlorenchyma, ground parenchyma and branched parenchyma. Using the fluorescent symplast tracer 8-hydroxypyrene-1,3,6-trisulfonic acid, it could be demonstrated that solutes imported by the phloem move into the chlorenchyma and ground parenchyma, but not into the branched parenchyma. From a comparison with literature data of common bean (Phaseolus vulgaris L.) and broad bean (Vicia faba L.), it is concluded that in the three species different parenchyma layers, but not the branched parenchyma, may be involved in the post-phloem symplasmic transport of nutrients in the seed coat. In pea, the branched parenchyma dies during the storage phase, and its cell wall remnants then form the boundary layer between the living seed coat parenchyma cells and the cotyledons. Using cryo-SEM, clear images were obtained of this boundary layer which showed that many intracellular spaces in the seed coat parenchyma are filled with an aqueous solution. This is suggested to facilitate the diffusion of nutrients from the site of unloading towards the cotyledons. 相似文献
7.
Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter 总被引:6,自引:0,他引:6
A transporter with homology to the SUT/SUC family of plant sucrose transporters was isolated from a sugarcane (Saccharum hybrid) stem cDNA library. The gene, designated ShSUT1, encodes a protein of 517 amino acids, including 12 predicted membrane-spanning domains and a large central cytoplasmic loop. ShSUT1 was demonstrated to be a functional sucrose transporter by expression in yeast. The estimated Km for sucrose of the ShSUT1 transporter was 2 mM at pH 5.5. ShSUT1 was expressed predominantly in mature leaves of sugarcane that were exporting sucrose and in stem internodes that were actively accumulating sucrose. Immunolocalization with a ShSUT1-specific antiserum identified the protein in cells at the periphery of the vascular bundles in the stem. These cells became lignified and suberized as stem development proceeded, forming a barrier to apoplasmic solute movement. However, the movement of the tracer dye, carboxyfluorescein from phloem to storage parenchyma cells suggested that symplasmic connections are present. ShSUT1 may have a role in partitioning of sucrose between the vascular tissue and sites of storage in the parenchyma cells of sugarcane stem internodes. 相似文献
8.
Differences in release of endogenous sugars and amino acids from attached and detached seed coats of developing pea seeds 总被引:2,自引:0,他引:2
The effect of p -chloromercuribenzenesulfonic acid (PCMBS), carbonylcyanide- m -chlorophenylhydrazone (CCCP) and a high apoplastic pH (pH 7.5 compared with pH 5.5) on the release of sugars (sucrose and glucose) and amino acids from attached and detached seed coats of Pisum sativum L. cv. Marzia into a bathing solution was measured by means of the 'empty seed coat technique'. PCMBS reduced the release of sugars and amino acids from attached as well as from detached seed coats, suggesting that carrier-mediated transport might be involved. CCCP reduced sugar release from attached seed coats while amino acid release was hardly affected. In experiments with detached seed coats CCCP had no effect on release of either sugar or amino acids, suggesting that it is not energy-dependent. Raising the pH of the bathing solution from pH 5.5 to pH 7.5 slightly increased sugar release from both attached and detached seed coats while amino acid release was not affected. This might indicate a role of the apoplastic pH in regulating sugar release from the seed coat via a retrieval mechanism. The presented data indicate that there are important differences between sugars and amino acids with respect to transport processes in the seed coat. This is supported by the observation that the rate of amino acid release from the seed coat was higher than the rate of sugar release. The release data of detached seed coats were subjected to compartmental analysis in order to calculate rate constants for release from cell compartments. In the case of sugars, the half-times for emptying the cytoplasmic and vacuolar compartment were 0.8 h and 12.5 h. respectively. For amino acids the half-times were 0.5 h for emptying the cytoplasmic and 3.8 h for emptying the vacuolar compartment. 相似文献
9.
Rolletschek H Borisjuk L Radchuk R Miranda M Heim U Wobus U Weber H 《Plant biotechnology journal》2004,2(3):211-219
An ambitious aim in plant breeding and biotechnology is to increase the protein content of crop seeds used for food and feed. Using an approach to manipulate assimilate partitioning, we succeeded in elevating the protein content in legume seeds up to 50%. Transgenic bean plants were generated which express a Corynebacterium glutamicum phosphoenolpyruvate carboxylase (PEPC) in a seed-specific manner. The bacterial enzyme was not feedback inhibited by malate. Transgenic seeds showed a higher [14C]-CO2 uptake and about a threefold increased incorporation of labelled carbon into proteins. Changed metabolite profiles of maturing cotyledons indicated a shift of metabolic fluxes from sugars/starch into organic acids and free amino acids. These changes were consistent with an increased carbon flow through the anaplerotic pathway catalysed by PEPC. Consequently, transgenic seeds accumulated up to 20% more protein per gram seed dry weight. Additionally, seed dry weight was higher by 20%-30%. We conclude that PEPC in seeds is a promising target for molecular plant breeding. 相似文献
10.
The sucrose transporter SUT1 functions in phloem loading of photoassimilates in solanaceous plant species. In the present study, wildtype and transgenic potato plants with either constitutive overexpression or antisense inhibition of SUT1 were grown under high or low phosphorus (P) fertilization levels in the presence or absence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices. At a low soil P fertilization level, the extent of AM fungal root colonization was not different among the genotypes. In all plants, the AM symbiosis contributed significantly to P uptake under these conditions. In response to a high soil P fertilization level, all genotypes showed a decrease in AM fungal root colonization, indicating that the expression level of SUT1 does not constitute a major mechanism of control over AM development in response to the soil P availability. However, plants with overexpression of SUT1 showed a higher extent of AM fungal root colonization compared with the other genotypes when the soil P availability was high. Whether an increased symbiotic C supply, alterations in the phytohormonal balance, or a decreased synthesis of antimicrobial compounds was the major cause for this effect requires further investigation. In plants with impaired phloem loading, a low C status of plant sink tissues did apparently not negatively affect plant C supply to the AM symbiosis. It is possible that, at least during vegetative and early generative growth, source rather than sink tissues exert control over amounts of C supplied to AM fungi. 相似文献
11.
Richard N. Trethewey Jörg W. Riesmeier Lothar Willmitzer Mark Stitt Peter Geigenberger 《Planta》1999,208(2):227-238
Fluxes were investigated in growing tubers from wild-type potato (Solanum tuberosum L. cv. Desiree) and from transformants expressing a yeast invertase in the cytosol under the control of the tuber-specific
patatin promoter either alone (EC 3.2.1.26; U-IN2-30) or in combination with a Zymomonas mobilis glucokinase (EC 2.7.1.2; GK3-38) by supplying radiolabelled [14C]sucrose, [14C]glucose or [14C]fructose to tuber discs for a 90-min pulse and subsequent chase incubations of 4 and 12 h, and by supplying [14C]fructose for 2 h and 4 h to intact tubers attached to the mother plant. Contrary to the expectation that this novel route
for sucrose degradation would promote starch synthesis, the starch content decreased in the transgenic lines. Labelling kinetics
did not reveal whether this was due to changes in the fluxes into or out of starch. However, they demonstrated that glycolysis
is enhanced in the transgenic lines in comparison to the wild type. There was also a significant stimulation of sucrose synthesis,
leading to a rapid cycle of sucrose degradation and resynthesis. The labelling pattern indicated that sucrose phosphate synthase
(SPS; EC 2.4.1.14) was responsible for the enhanced recycling of label into sucrose. In agreement, there was a 4-fold and
6-fold increase in the activation status of SPS in U-IN2-30 and GK3-38, respectively, and experiments with protein phosphatase
inhibitors indicated that this activation involves enhanced dephosphorylation of SPS. It is proposed that this activation
of SPS is promoted by the elevated glucose 6-phosphate levels in the transgenic tubers. These results indicate the pitfalls
of metabolic engineering without a full appreciation of the metabolic system and regulatory circuits present in the tissue
under investigation.
Received: 21 July 1998 / Accepted: 5 December 1998 相似文献
12.
Michio Masuko Kensuke Miyamoto Kensuke Sakurai Moritoshi Iino Yasuyoshi Takeuchi Tohru Hashimoto 《Phytochemistry》1983,22(5):1278-1280
Two new growth inhibitors, R-dihydromaleimide and R-dihydromaleimide β-d-glucoside, were isolated from 2-week-old pea shoots. 相似文献
13.
Maximum axial root growth pressure in pea seedlings: effects of measurement techniques and cultivars
Clark L.J. Bengough A.G. Whalley W.R. Dexter A.R. Barraclough P.B. 《Plant and Soil》1999,209(1):101-109
Values of the maximum axial growth pressure (σmax) of seedling pea (Pisum sativum L.) roots reported in the literature, obtained using different apparatuses and cultivars,
range from 0.3 MPa to 1.3 MPa. To investigate possible reasons for this large range, we studied the effect of apparatus and
cultivar on measurements of σmax in peas. We describe four types of apparatus which can be used to measure axial root growth force and hence σmax, and used them to measure σmax in seedling pea roots using cultivar Meteor. Two of these apparatuses were also used to compare σmax for three pea cultivars (Helka, Meteor and Greenfeast). Both cultivar and apparatus significantly affected σmax , but there were greater differences between apparatuses than between the three cultivars. Estimating root cross-sectional
area from the diameter of cross-sections, rather than from in situ measurements (i.e. measurements made with the root still
in place in the apparatus) may explain these differences.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
14.
The process of sugar and amino acid release by the seed coat of Pisum sativum L. cv. Marzia was studied. Prior to measuring the release of solutes by the seed coat of developing ovules, the embryo was removed from each ovule studied. After this surgical treatment, each "empty" seed coat was filled with the appropriate solution (pH 5.5) with or without inhibitor. Both KCN and p-chloromercuribenzenesulfonic acid (PCMBS) strongly inhibited the release of sucrose and p -aminoisobutyric acid (AIB) by the seed-coat. These data support the view that phloem unloading is an energy-dependent process sensitive to the sulfhydryl group modifier PCMBS. In pulse-labelling experiments, addition of high concentrations of unlabelled sucrose (200 m M ) and AIB (25 m M ) to the solution filling the seed coat cavity did not diminish the release of labelled solutes by the unloading sites of the seed coat. This observation presents evidence against the view that phloem unloading into a strong sink is related to low sugar concentrations in the apoplast. 相似文献
15.
Contribution of sucrose synthase, ADP-glucose pyrophosphorylase and starch synthase to starch synthesis in developing pea seeds 总被引:11,自引:0,他引:11
Using genetic variability existing amongst nine pea genotypes (Pisum sativum L.), the biochemical basis of sink strength in developing pea seeds was investigated. Sink strength was considered to be reflected by the rate of starch synthesis (RSS) in the embryo, and sink activity in the seed was reflected by the relative rate of starch synthesis (RRSS). These rates were compared to the activities of three enzymes of the starch biosynthetic pathway [sucrose synthase (Sus), ADP-glucose pyrophosphorylase and starch synthase] at three developmental stages during seed filling (25, 50 and 75% of the dry seed weight). Complete sets of data collected during seed filling for the nine genotypes showed that, for all enzyme activities (expressed on a protein basis), only Sus in the embryo and seed coat was linearly and significantly correlated to RRSS. The contribution of the three enzyme activities to the variability in RSS and RRSS was evaluated by multiple regression analysis for the first two developmental stages. Only Sus activity in the embryo could explain, at least in part, the significant variability observed for both the RSS and the RRSS at each developmental stage. We conclude that Sus activity is a reliable marker of sink activity in developing pea seeds. 相似文献
16.
新鲜草菇味道鲜美,香味浓郁,而且营养丰富,是具有中国特色的食药用菌。草菇采后极易开伞,低温贮藏(10℃以下)则容易自溶、渗水腐、发出异味,是最不易贮藏的食用菌之一。本课题组先前的研究表明草菇MADS-box转录因子Vvrin1基因可能在草菇菌柄的伸长、菌盖的开伞过程中起到一定的作用。因此,本研究以Vvrin1基因为研究对象,构建该基因的过表达载体,通过农杆菌介导的方法进行转化草菇异核菌株H1521菌丝块。通过潮霉素抗性平板筛选,PCR扩增潮霉素抗性基因及Vvrin1基因过表达特异片段,qRT-PCR分析拟转化子菌株内的Vvrin1基因表达量,最终获得了8个比较可靠的转化子。进一步对这些转化子的表型进行初探,发现其中7个转化子的生长速度比出发菌株H1521快,具有显著性差异(P<0.05),且转化子菌丝更浓密,菌落表面颜色更深,推测草菇MADS-box转录因子Vvrin1基因可能参与了菌丝阶段生长速度和色素合成或积累的调控。研究结果为进一步研究草菇MADS-box转录因子Vvrin1基因的功能提供了菌株材料及数据支持。 相似文献
17.
Over-expression of an arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development 总被引:1,自引:0,他引:1
The objective of this study was to manipulate the intracellular pools of sucrose by differentially expressing exogenous sucrose
phosphate synthase (SPS) and investigating its role in regulating plant growth and fibre development. Tobacco (Nicotiana tabacum cv. Xanthi) plants were transformed with an arabidopsis SPS gene under the regulation of the ubiquitously expressed tandem
repeat of the 35S cauliflower mosaic virus promoter, and subject to growth trials and fibre characterization. It was apparent
that over-expression of SPS resulted in substantially elevated concentrations of sink sucrose pools compared to wild-type
plants, while source tissue sucrose pools remained the same. All transformed plants had significantly increased stem height,
which was ascribed to internode elongation, and greater stem diameters, longer fibers and increased total dry biomass relative
to the control plants. Difference in the chemical composition of either the storage or structural carbohydrates of the wild-type
and SPS transgenic lines were only minor. The correlation between increased stem sucrose content and plant phenotypes with
elevated SPS gene expression confirm a role for sucrose availability in controlling plant growth and fibre elongation. 相似文献
18.
The cellular pathway of sugar uptake in developing cotyledons of Vicia faba L. and Phaseolus vulgaris L. seed was evaluated using a physiological approach. The cotyledon interface with the seed coat is characterised by a specialised dermal cell complex. In the case of Vicia faba cotyledons, the epidermal component of the dermal cell complex is composed of transfer cells. Sucrose is the major sugar presented to the outer surface of both cotyledons and it is taken up from the apoplasm unaltered. Estimated sucrose concentrations within the apparent free space of Vicia and Phaseolus cotyledons were 105 and 113 mM respectively. Rates of in-vitro uptake of [14C]sucrose by cotyledon segments or by whole cotyledons following physical removal or porter inactivation of the outer cells demonstrated that, for both Vicia and Phaseolus cotyledons, the dermal cell complexes are the most intense sites of sucrose uptake. Accumulation of [14C]sucrose in the storage parenchyma of whole cotyledons was directly affected by experimental manipulation of uptake by the outer cell layers and plasmolytic disruption of the interconnecting plasmodesmata. These findings indicated that sucrose accumulated by the dermal cell complexes is transported symplasmically to the storage parenchyma. Overall, it is concluded that the dermal cell complexes of the developing legume embryo, irrespective of the presence or absence of wall ingrowths, are the major sites for the uptake of sucrose released from the maternal tissues to the seed apoplasm. Thereafter, the accumulated sucrose is transported radially inward through the symplast to the storage parenchyma.Abbreviations AFS
apparent free space
- CF
5-(6)-carboxyfluorescein
- CFDA
5-(6)-carboxyfluorescein diacetate
- Mes
2-(N-morpholino)ethanesulfonic acid
- PCMBS
p-chloromercuribenzenesulfonic acid
- SRG
sulphorhodamine G
The investigation was supported by funds from the Research Management Committee, The University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are grateful to Stella Savoury for preparing the photomicrographs. 相似文献
19.
Stanisław Grzesiak Morio Iijima Yasuhiro Kono Akira Yamauchi 《Acta Physiologiae Plantarum》1997,19(3):339-348
Different responses among legume species were observed, but the morphological and physiological differences that confer drought
resistance or susceptibility are not well explained. The objective of this study was the determination of variation of morphological
characteristics within 7 field bean and 4 field pea cultivars as related to drought tolerance. Also differences in the effect
of drought on seed germination and seedling growth in 2 field bean and 2 field pea cultivars of different drought tolerances
were investigated.
The examined cultivars were characterized by variation of certain morphological characteristics regarded as xeromorphic features
associated with the ability of plant to survive under drought. The drought resistant cultivars (field bean Gobo and field
pea Solara) in comparison with the sensitive ones (field bean Victor and field pea Bareness) were characterized by more favourable
relations between the size of the above—ground parts and the size of root, as well as the frequency and size of stomata. Moreover,
in the resistant cultivars there was observed, a smaller influence of simulated drought (ψ=−0.6 MPa) on the increase of dry
matter of the above-ground parts and of the roots. Also there was smaller influence on the height of seedlings and on the
length of lateral roots. The correlation coefficients between the measured characteristics and the values of the drought susceptibility
index (DSI) were in most cases statistically not significant, although, on the whole, they were very high. This may be an
indication of a relatively high participation of the measured characteristics in the total variation of the drought tolerance
in the cultivars. In cultivars regarded as belonging to the group of sensitive ones, a more disadvantageous effect of simulated
drought (ψ=−0.6 MPa) on seed germination was observed, especially in the determination of the promptness index (PI). 相似文献
20.
The effect of gibberellic acid (GA) on subhook growth in derooted cuttings of pea ( Pisum sativum L. cv. Alaska) grown in the dark was studied in relation to the distribution of sugar-related compounds in the epicotyl and cotyledons. GA stimulated subhook growth of cuttings with or without cotyledons. In cuttings with cotyledons, the net inflow of sugar-related compounds (soluble sugars, starch, cell wall polysaccharides and sugars consumed by respiration) to the epicoiyl balanced with the net outflow from the cotyledons. GA stimulated the net inflow of sugar-related compounds to the epicotyl and the net outflow from cotyledons. Among these compounds, GA substantially increased the amount of soluble sugars, starch and cell wall polysaccharides in the subhook. In cuttings without cotyledons, on the other hand, the net inflow of sugar-related compounds to the subhook almost balanced with the net outflow from the epicotyl below the subhook. GA stimulated the net inflow of sugar-related compounds to the subhook and the net outflow from the epicotyl below the subhook. Among these compounds, GA substantially increased the amount of soluble sugars and cell wall polysaccharides in the subhook. These results suggest that GA stimulates an increase in the net inflow of sugar-related compounds to the subhook, thereby preventing an increase in osmotic potential and stimulating cell wall polysaccharide synthesis, when pea subhook growth is stimulated. 相似文献