首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Hypoxia induces a regulated decrease in body temperature (Tb; anapyrexia) in organisms ranging from protozoans to mammals, but very little is known about the mechanisms involved. Several candidates have been suggested to mediate hypoxia-induced anapyrexia, among them lactate, which is a classical compansion of hypoxic stress in vertebrates. The present study was designed to assess the central thermoregulatory effects of lactate in Bujo paracnemis. Toads equipped with a temperature probe were tested over a thermal gradient (10-40 degrees C). Lactate injected systemically (4.0 mmol kg-1) caused a significant reduction of Tb from 24.6 +/- 2.1 to 17.4 +/- 3.9 degrees C. To assess the role of central thermoregulatory mechanisms, a lower dose (0.4 mmol kg-1) of lactate was injected into the fourth cerebral ventricle or systemically. Intracerebroventricular injection of lactate caused a similar decrease in Tb, whereas systemic injection caused no change. The data indicate that lactate may play a role in hypoxia-induced anapyrexia in central rather than peripheral sites.  相似文献   

2.
《Journal of thermal biology》2001,26(4-5):339-343
(1) Centrally acting carbon monoxide (CO) seems to play thermoregulatory actions, but no report exists about its role in hypoxia-induced anapyrexia. (2) CO arises from the catabolism of heme by heme oxygenase (HO), an enzyme that is overexpressed during hypoxia. Thus, we tested the hypothesis that the central HO–CO pathway modulates hypoxia-induced anapyrexia by means of intracerebroventricular injection of the HO inhibitor ZnDPBG. (3) Core temperature (TC) of awake rats was determined by biotelemetry. ZnDPBG did not alter basal Tc, but it exacerbated hypoxia-induced anapyrexia, indicating that the central HO–CO pathway is a modulator of hypoxia-induced anapyrexia, probably preventing excessive decreases in Tc.  相似文献   

3.
Pulmonary responses to intravenous leukotrienes C4, D4 and E4 administered as a bolus injection and by continuous infusion were studied in anesthetized guinea pigs. LTD4, LTC4 and LTE4 (respective ED50 of 0.21 ± .1, 0.64 ± .2 and 2.0 ± .1 μg kg−1) produced dose-dependent increases in insufflation pressure when given as a bolus injection to anesthetized guinea pigs (Konzett-Rössler). Bronchoconstriction was antagonized by FPL-55712 (50–200 μg kg−1), and indomethacin (50–200 μg kg−1) but was not significantly altered by mepyramine (1.0 mg kg−1), methysergide (0.1 mg kg−1), intal (10 mg kg−1) mepacrine (5 mg kg−1) or dexamethasone (10 mg kg−1). The beta adrenoceptor blocker, timolol (5 μg kg−1) produced a significantly greater potentiation of the responses to the leukotrienes than to arachidonic acid, histamine and acetylcholine. Responses to bolus injection of LTE4 but not LTD4 or LTC4 were partially antagonized by atropine (100 μg kg−1) and bilateral vagotomy. In experiments of a different design, continuous infusion of LTD4 and LTE4 (2.8–3.2 μg kg−1 min−1) into indomethacin-treated animals produced slowly developing increases in pulmonary resistance and decreases in compliance. The increase in resistance produced by LTE4 and LTD4 was partly reversed by intravenous FPL-55712 (1.0 mg kg−1) and atropine (100 μg kg−1) but was almost completely reversed by FPL-55712 (3 – 10 mg kg−1). These findings indicate that leukotrienes can produce bronchoconstriction in guinea pigs through cyclooxygenase-dependent and cyclooxygenase independent mechanisms both of which are blocked by FPL-55712. Cholinergic mechanisms are involved in the mediation of part of the response to bolus injection of LTE4 as well as a small part of the initial response to continuous infusion of LTD4 and LTE4. Intrinsic beta adrenoceptor activation serves to down modulate responses to the leukotrienes to a greater extent than responses to arachidonic acid, histamine and acetylcholine.  相似文献   

4.
The concept that hypoxia elicits a drop in body temperature (T(b)) in a wide variety of animals is not new, but the mechanisms remain unclear. We tested the hypothesis that adenosine mediates hypoxia-induced hypothermia in toads. Measurements of selected T(b) were performed using a thermal gradient. Animals were injected (into the lymph sac or intracerebroventricularly) with aminophylline (an adenosine receptor antagonist) followed by an 11-h period of hypoxia (7% O(2)) or normoxia exposure. Control animals received saline injections. Hypoxia elicited a drop in T(b) from 24.8 +/- 0.3 to 19. 5 +/- 1.1 degrees C (P < 0.05). Systemically applied aminophylline (25 mg/kg) did not change T(b) during normoxia, indicating that adenosine does not alter normal thermoregulatory function. However, aminophylline (25 mg/kg) significantly blunted hypoxia-induced hypothermia (P < 0.05). To assess the role of central thermoregulatory mechanisms, a smaller dose of aminophylline (0.25 mg/kg), which did not alter hypoxia-induced hypothermia systemically, was injected into the fourth cerebral ventricle. Intracerebroventricular injection of aminophylline (0.25 mg/kg) caused no significant change in T(b) under normoxia, but it abolished hypoxia-induced hypothermia. The present data indicate that adenosine is a central and possibly peripheral mediator of hypoxia-induced hypothermia.  相似文献   

5.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

6.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21‰ salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6 ± 4.9 U mg− 1 and K0.5 = 1.31 ± 0.05 mmol L− 1. Stimulation of K+-phosphatase activity by magnesium (Vmax = 125.3 ± 7.5 U mg− 1; K0.5 = 2.09 ± 0.06 mmol L− 1), potassium (Vmax = 134.2 ± 6.7 U mg− 1; K0.5 = 1.33 ± 0.06 mmol L− 1) and ammonium ions (Vmax = 130.1 ± 5.9 U mg− 1; K0.5 = 11.4 ± 0.5 mmol L− 1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI = 304.9 ± 18.3 μmol L− 1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the ≈2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar α-subunit expression in gill tissue from shrimps acclimated to 21‰ salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.  相似文献   

7.
The present status of the technique to measure concentrations of electrolyte elements and dry mass in 1 μm thick frozen-hydrated sections of soft biological tissues with electron probe X-ray microanalysis in a scanning electron microscope is critically reviewed. The technique is to quench-freeze fresh specimens to < − 180°C, cut 1 μm thick hydrated cryosections −70°C), transfer on to a cold stage (< −170°C) of a suitable microanalytical arrangement, obtain scanning transmission images to identify the cell and tissue compartments, locate an electron probe (several μm2 to 100 nm) on the areas of interest and collect X-ray quanta. The X-ray quanta are collected with suitable spectrometers (WDS and EDS) and processed with a computer using a comprehensive programme based on continuum normalization procedures (‘Hall’ programme). The cryosections are analysed first in a hydrated state and second after dehydration within the microanalyser column to obtain directly elemental concentrations in mM kg−1 wet wt and mM kg−1 dry wt of the compartments identified under the beam. The local water-fractions are estimated and the elemental concentrations converted into mM 1−1 water. In the past 7 years the technique has been applied to obtain fully quantitative information on Na, K, Cl, P, S, Ca and H2O in more than ten types of tissue.  相似文献   

8.
This study compared the mass-specific routine metabolic rate (RMR) of similar sized mulloway (Argyrosomus japonicus), a sedentary species, and yellowtail kingfish (Seriola lalandi), a highly active species, acclimated at one of several temperatures ranging from 10–35 °C. Respirometry was carried out in an open-top static system and RMR corrected for seawater–atmosphere O2 exchange using mass-balance equations. For both species RMR increased linearly with increasing temperature (T). RMR for mulloway was 5.78T − 29.0 mg O2 kg− 0.8 h− 1 and for yellowtail kingfish was 12.11T − 39.40 mg O2 kg− 0.8 h− 1. The factorial difference in RMR between mulloway and yellowtail kingfish ranged from 2.8 to 2.2 depending on temperature. The energetic cost of routine activity can be described as a function of temperature for mulloway as 1.93T − 9.68 kJ kg− 0.8 day− 1 and for yellowtail kingfish as 4.04T − 13.14 kJ kg− 0.8 day− 1. Over the full range of temperatures tested Q10 values were approximately 2 for both species while Q10 responses at each temperature increment varied considerably with mulloway and yellowtail kingfish displaying thermosensitivities indicative of each species respective niche habitat. RMR for mulloway was least thermally dependent at 28.5 °C and for yellowtail kingfish at 22.8 °C. Activation energies (Ea) calculated from Arrhenius plots were not significantly different between mulloway (47.6 kJ mol− 1) and yellowtail kingfish (44.1 kJ mol− 1).  相似文献   

9.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10−8 M and was half-maximal at 7.9±3.4·10−7M. The increase at 1·10−5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10−9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10−5 M dopamine was 2.3±0.9·10−6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10−7M and 4.7±1.6·10−7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10−6Mcis-flupenthixol, 2.7±0.4·10−5Mtrans-flupenthixol, >1·10−5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

10.
Microcosm assays and Taguchi experimental design was used to assess the biodegradation of an oil sludge produced by a gas processing unit. The study showed that the biodegradation of the sludge sample is feasible despite the high level of pollutants and complexity involved in the sludge. The physicochemical and microbiological characterization of the sludge revealed a high concentration of hydrocarbons (334,766 ± 7001 mg kg−1 dry matter, d.m.) containing a variety of compounds between 6 and 73 carbon atoms in their structure, whereas the concentration of Fe was 60,000 mg kg−1 d.m. and 26,800 mg kg−1 d.m. of sulfide. A Taguchi L9 experimental design comprising 4 variables and 3 levels moisture, nitrogen source, surfactant concentration and oxidant agent was performed, proving that moisture and nitrogen source are the major variables that affect CO2 production and total petroleum hydrocarbons (TPH) degradation. The best experimental treatment yielded a TPH removal of 56,092 mg kg−1 d.m. The treatment was carried out under the following conditions: 70% moisture, no oxidant agent, 0.5% of surfactant and NH4Cl as nitrogen source.  相似文献   

11.
The metabolism of 52–73-day old Antarctic fur seal pups from Bird Island, South Georgia, was investigated during fasting periods of normal duration while their mothers were at sea foraging. Body mass decreased exponentially with pups losing 3.5–3.8% of body mass per day. Resting metabolic rate also decreased exponentially from 172–197 ml (O2)·min−1 at the beginning of the fast and scaled to Mb0.74 at 2.3 times the level predicted for adult terrestrial mammals of similar size. While there was no significant sex difference in RMR, female pups had significantly higher (F1,18=6.614, P<0.019) mass-specific RMR than male pups throughout the fasting period. Fasting FMR was also significantly (t15=2.37, P<0.035) greater in females (823 kJ·kg−1·d−1) than males (686 kJ·kg−1·d−1). Average protein turnover during the study period was 19.3 g·d−1 and contributed to 5.4% of total energy expenditure, indicating the adoption of a protein-sparing strategy with a reliance on primarily lipid catabolism for metabolic energy. This is supported by observed decreases in plasma BUN, U/C, glucose and triglyceride concentrations, and an increase in β-HBA concentration, indicating that Antarctic fur seals pups adopt this strategy within 2–3 days of fasting. Mean RQ also decreased from 0.77 to 0.72 within 3 days of fasting, further supporting a rapid commencement of protein-sparing. However, RQ gradually increased thereafter to 0.77, suggesting a resumption of protein catabolism which was not substantiated by changes in plasma metabolites. Female pups had higher TBL (%) than males for any given mass, which is consistent with previous findings in this and other fur seal species, and suggests sex differences in metabolic fuel use. The observed changes in plasma metabolites and protein turnover, however, do not support this.  相似文献   

12.
Micellar electrokinetic chromatography is used to separate dansylated nucleotides, both normal and modified species. The high separation power allows detection of minor components present in less than 1 part per thousand of the major components. Laser-excited fluorescence is used to detect the separated components at the 6 · 10−18 mol level or 10−9 M injected material. Combined with high-performance liquid chromatographic enrichment prior to labeling, this technique can be used to assess DNA damage in carcinogenesis studies.  相似文献   

13.
The nutrient content and fatty acid composition of vervet monkey milk has been determined and is compared with rhesus macaque, and two hominoid apes, the white handed gibbon and gorilla. With 15.7 ± 4.1 g protein, 33.1 ± 9.4 g fat, and 85.1 ± 7.5 g lactose per kg milk, vervet monkey milk does not differ from that of rhesus macaque, and is within the range of other primates. Small amounts (> 1 g kg− 1) of oligosaccharides, glucose, galactose and fucose were noted. In comparison, gorilla milk has a low fat content of 13.8 g kg− 1, but contains high levels of oligosaccharides at 7.0 g kg− 1 milk. The hominoid partner, the white handed gibbon, contains no oligosaccharides and a milk fat content similar to other hominoid species. Differences between vervet monkey and rhesus macaque milks were observed in the electrophoretic pattern of the milk proteins, mainly amongst the κ- and γ-caseins, which also differ from that of the hominids. The fatty acid contents of these milks differ from studies where a natural diet of leafy material was available in that a low content of α-linolenic acid (18:3n−3) was noted. A phylogenetic effect is observed for the content of 8:0, 10:0 fatty acids between the Cercopithecidae and Hominoidea, and a further phylogenetic effect suggested between the Hylobatidae and Hominidae.  相似文献   

14.
The effects of a synthetic prostaglandin analogue, cloprostenol, on luteal function in a guinea pig were studied. At a dose of 250μg, cloprostenol administered I-P on day 9 of the oestrous cycle caused a reduction in the length of the oestrous cycle from 17.4±s.d. 0.9 to 14.5±1.1 days (p<0.01). Lower doses were ineffective, and post-treatment cycles were not different in length from pre-treatment cycles. Cloprostenol also caused a dose-dependent reduction in luteal weight, which fell from 3.52±0.82 to 1.82±0.4mg (<0.01) 48 h after administation of a 250μg dose on day 9. Plasma progesterone, measured by radioimmunoassay, was reduced from 4.67±0.59 to 2.69±0.66 ng ml−1(p<0.01) 48 h after administration of 250μg cloprostenol on day 9. 250μg cloprostenol also reduced blood flow per corpus luteum, measured by 85Sr-labelled 15μm microspheres, both at 3 h (20.20±10.36 to 9.40±4.2μ1 min−1; p0.05) and at 48 h 18.47±8.27 to 5.23±1.90μl min−1; p<0.01) after administration on day 9. No adverse side-effects were observed at any dose level of cloprostenol used. It was concluded that cloprostenol is a useful experimental luteolysin in the guinea pig.  相似文献   

15.
The effect of bromocriptine mesylate on cyclic nucleotides and PGI2 release by rat aortic and uterine tissues was investigated. Treatment of rats with bromocriptine (10 mg kg−1 I.P. daily for 14 days) increased PGI2 release by the thoracic aorta from 0.67 ± 0.02 to 1.4 ± 0.03 ng/mg wet tissue (P < 0.001; n = 6). This increase was antagonized by treatment with sulpiride (15 mg kg−1). Incubation of the arterial tissue with bromocriptive (50 ug ml) in vitro also stimulated PGI2 release. Mepacrine (160 μg ml) significantly decreased both basal and stimulated PGI2 release. Incubation of myometrial tissue from pregnant rats with bromocriptine (50 μg ml−1) in vitro significantly decreased PGI2 release from 1.25 ± 0.07 to 0.60 ± 0.08 ng/mg wet tissue (P < 0.05, n = 6).It also elevated uterine cAMP from 40 ± 2 to 64 ± 3 pmoles/100 mg wet tissue. Both effects were antagonized by sulpiride. Bromocriptine did not affect uterine cGMP or the cyclic nucleotides in the aorta. It is concluded that the increase in aortic PGI2 was mediated via activation of dopamine D-2 receptors that stimulate phospholipase A2 enzyme. The decrease in myometrial PGI2 release may be related to the increase in uterine cAMP resulting from activation of dopamine D-1 receptors. Previous studies suggested a role for PGI2 in implantation in the rat. The results suggest that the inhibitory effèct on uterine PGI2 may underlie the reported inhibition of bromocriptine on implantation. On broad basis, the decrease in uterine PGI2 together with the reported luteolytic effect of bromocriptine point to a potential role for the compound in postcoital contraception.  相似文献   

16.
In this study, the hydraulic conductivity (Lp), Me2SO permeability ( Me2SO), and the reflection coefficients (ς) and their activation energies were determined for Metaphase II (MII) mouse oocytes by exposing them to 1.5 M Me2SO at temperatures of 30, 20, 10, 3, 0, and −3°C. These data were then used to calculate the intracellular concentration of Me2SO at given temperatures. Individual oocytes were immobilized using a holding pipette in 5 μl of an isosmotic PBS solution and perfused with precooled or prewarmed 1.5 M Me2SO solutions. Oocyte images were video recorded. The cell volume changes were calculated from the measurement of the diameter of the oocytes, assuming a spherical shape. The initial volume of the oocytes in the isoosmotic solution was considered 100%, and relative changes in the volume of the oocytes after exposure to the Me2SO were plotted against time. Mean (means ± SEM) Lpvalues in the presence of Me2SO ( Me2SOp) at 30, 20, 10, 3, 0, and −3°C were determined to be 1.07 ± 0.03, 0.40 ± 0.02, 0.18 ± 0.01, 7.60 × 10−2± 0.60 × 10−2, 5.29 × 10−2± 0.40 × 10−2, and 3.69 × 10−2± 0.30 × 10−2μm/min/atm, respectively. The Me2SOvalues were 3.69 × 10−3± 0.3 × 10−3, 1.07 × 10−3± 0.1 × 10−3, 2.75 × 10−4± 0.15 × 10−4, 7.83 × 10−5± 0.50 × 10−5, 5.24 × 10−5± 0.50 × 10−5, and 3.69 × 10−5± 0.40 × 10−5cm/min, respectively. The ς values were 0.70 ± 0.03, 0.77 ± 0.04, 0.81 ± 0.06, 0.91 ± 0.05, 0.97 ± 0.03, and 1 ± 0.04, respectively. The estimated activation energies (Ea) for Me2SOp, Me2SO, and ς were 16.39, 23.24, and −1.75 Kcal/mol, respectively. These data may provide the fundamental basis for the development of more optimal cryopreservation protocols for MII mouse oocytes.  相似文献   

17.
Chitosan (Ch) was chemically modified with ethylenesulfide (Es) under solvent-free conditions to give (ChEs), displaying a high content of thiol groups due to opening of the three member cyclic reagent. Elemental analysis showed a decrease in nitrogen content. This result indicated the incorporation of two ethylenesulfide molecules for each unit of the polymeric structure of the precursor biopolymer. Infrared spectroscopy, thermogravimetry, and 13C NMR in the solid state demonstrated the effectiveness of the reaction, with signals at 30 ppm for ChEs due to the change in the methylene group environment. Divalent metal uptake by chemically modified biopolymer gave the order Cu > Ni > Co > Zn, reflecting the corresponding acidity of these cations in bonding to the sulfur and the basic nitrogen atoms available on the pendant chains. The equilibrium data were fitted to Freundlich, Temkin, and Langmuir models. The maximum monolayer adsorption capacity for the cations was found to be 1.54 ± 0.02, 1.25 ± 0.03, 1.13 ± 0.01, and 0.83 ± 0.03 mmol g−1, respectively. The Langmuir model best explained the cation–sulfur bond interactions at the solid–liquid interface. The thermodynamics for these interactions gave exothermic enthalpic values of −43.02 ± 0.03, −28.72 ± 0.02, −26.27 ± 0.04, and −17.32 ± 0.02 kJ mol−1, respectively. The spontaneity of the systems is given by negative Gibbs free energies of −31.2 ± 0.1, −32.7 ± 0.1, −31.7 ± 0.1, and −32.2 ± 0.1 kJ mol−1, respectively, in spite of the unfavorable negative entropic values of −39 ± 1, −13 ± 1, −18 ± 1, and −49 ± 1 J K−1 mol−1 due to solvent ordering in the course of complexation. This newly synthesized biopolymer is presented as a chemically useful material for cation removal from aqueous solution.  相似文献   

18.
The effects of different cadmium concentrations [17 mg(Cd) kg−1(soil) and 72 mg(Cd) kg− 1(soil)] on Cannabis sativa L. growth and photosynthesis were examined. Hemp roots showed a high tolerance to Cd, i.e. more than 800 mg(Cd) kg−1(d.m.) in roots had no major effect on hemp growth, whereas in leaves and stems concentrations of 50 – 100 mg(Cd) kg−1(d.m.) had a strong effect on plant viability and vitality. For control of heavy metal uptake and xylem loading in hemp roots, the soil pH plays a central role. Photosynthetic performance and regulation of light energy consumption were analysed using chlorophyll fluorescence analysis. Seasonal changes in photosynthetic performance were visible in control plants and plants growing on soil with 17 mg(Cd) kg−1(soil). Energy distribution in photosystem 2 is regulated in low and high energy phases that allow optimal use of light and protect photosystem 2 from overexcitation, respectively. Photosynthesis and energy dissipation were negatively influenced by 72 mg(Cd) kg−1(soil). Cd had detrimental effects on chlorophyll synthesis, water splitting apparatus, reaction centre, antenna and energy distribution of PS 2. Under moderate cadmium concentrations, i.e. 17 mg(Cd) kg−1(soil), hemp could preserve growth as well as the photosynthesis apparatus, and long-term acclimation to chronically Cd stress occurred.  相似文献   

19.
We measured Na+/K+ ATPase activity in homogenates of gill tissue prepared from field caught, winter and summer acclimatized yellow perch, Perca flavescens. Water temperatures were 2–4°C in winter and 19–22°C in summer. Na+/K+ ATPase activity was measured at 8, 17, 25, and 37°C. Vmax values for winter fish increased from 0.48±0.07 μmol P mg−1 protein h−1 at 8°C to 7.21±0.79 μmol P mg−1 protein h−1 at 37°C. In summer fish it ranged from 0.46±0.08 (8°C) to 3.86±0.50 (37°C) μmol P mg−1 protein h−1. The Km for ATP and for Na+ at 8°C was ≈1.6 and 10 mM, respectively and did not vary significantly with assay temperature in homogenates from summer fish. The activation energy for Na+/K+ ATPase from summer fish was 10 309 (μmol P mg−1 h−1) K−1. In winter fish, the Km for ATP and Na+ increased from 0.59±0.08 mM and 9.56±1.18 mM at 8°C to 1.49±0.11 and 17.88±2.64 mM at 17°C. The Km values for ATP and Na did not vary from 17 to 37°C. A single activation energy could not be calculated for Na/K ATPase from winter fish. The observed differences in enzyme activities and affinities could be due to seasonal changes in membrane lipids, differences in the amount of enzyme, or changes in isozyme expression.  相似文献   

20.
In order to study the disposition of dimethylamphetamine (DMAP) and its metabolites, DMAP N-oxide, methamphetamine (MA) and amphetamine (AP), from plasma to hair in rats, a simultaneous determination method for these compounds in biological samples using gas chromatography–mass spectrometry with selected ion monitoring (GC–MS-SIM) was developed. As DMAP N-oxide partially degrades to DMAP and MA during GC–MS analysis, it was necessary to avoid conditions which co-extract the N-oxide in the sample preparation so as to assure no contribution of artifactual products from DMAP N-oxide in the detection of the other compounds. For confirmation of the satisfactory separation of DMAP N-oxide from the others, the internal standards used for quantification were labeled with different numbers of deuterium atoms. Determination of unchanged DMAP was performed without any derivatization, that of DMAP N-oxide was carried out after conversion into trifluoroacetyl-MA by reaction with trifluoroacetic anhydride, and MA and AP were quantified after trifluoroacetyl-derivatization.After intraperitoneal administration of DMAP HCl to pigmented hairy rats (5 mg kg−1 day−1, 10 days, n=3), concentrations of DMAP and its metabolites in urine, plasma and hair were measured by GC–MS-SIM. The area under the concentration versus time curves (AUCs) of DMAP, DMAP N-oxide, MA and AP in the plasma were 397.2±97.5, 279.7±68.3, 18.4±1.2 and 15.9±2.2 μg min ml−1, while their concentrations in the hair newly grown for 4 weeks after administration were 4.82±0.67. 0.45±0.09, 3.25±0.36 and 0.89±0.05 ng mg−1, respectively. This fact suggested that the incorporation tendency of DMAP N-oxide from plasma into hair was distinctly low in comparison with the other compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号