首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two cell cycle-specific temperature sensitive (ts) mutants of mammalian cell lines, AF8 and K12, are known to arrest in G1 when shifted to the non-permissive temperature. We have determined the entry into S of both AF8 and K12 cells in five different growth conditions, namely: (1) quiescent sparse cultures stimulated to proliferative by serum; (2) quiescent dense cultures stimulated by serum; (3) quiescent sparse cultures stimulated by trypsinization and replating; (4) quiescent, dense cultures stimulated by trypsinization and replating; and (5) mitotic cells collected by mitotic detachment. In addition, for each cell line and for each different growth condition, we have determined the shift-up time, i.e., the time at which a shift-up to the nonpermissive temperature no longer prevents the entry of cells into S. In no case did K12 or AF8 enter S at the nonpermissive temperature. At the permissive temperature, the average time of entry into S varied in different growth conditions, and so did the shift-up time. However, in both cell lines, the distance of the average shift-up time from the average time of entry into S was remarkably constant, regardless of the growth conditions. i.e., 1.8 hours in K12 and 8.6 hours in AF8.  相似文献   

2.
Two temperature-sensitive (ts) mutants of mammalian cell lines (AF8 and cs4D3) that arrest in G1 at the nonpermissive temperature were fused with chick erythrocytes and the induction of DNA synthesis was studied in the resulting heterokaryons. While both AF8 and cs4D3 could induce DNA synthesis in chick nuclei at the permissive temperature, they both failed to do so when arrested in G1 at the nonpermissive temperature. When S phase AF8 cells were fused with chick erythrocytes, chick nuclei were reactivated even if the heterokaryons were incubated at the temperature nonpermissive for AF8. A third ts mutant, ts111, that is blocked in cytokinesis but continues to synthesize DNA, reactivated chick nuclei at both permissive and nonpermissive temperature. It is concluded that chick erythrocyte reactivation depends on the presence of S phase-specific factors.  相似文献   

3.
Cytoplasmic regulation of two G1-specific temperature-sensitive functions   总被引:4,自引:0,他引:4  
G J Jonak  R Baserga 《Cell》1979,18(1):117-123
tsAF8 and ts13 cells are temperature-sensitive (ts) mutants of BHK cells that specifically arrest, at nonpermissive temperature, in the G1 phase of the cell cycle. These two mutants can complement each other. Both cell lines can be made quiescent by serum deprivation (G0). When subsequently stimulated by serum, they can enter S phase at 34 degrees C but not at 39.5 degrees-40.6 degrees C. We have used these mutants to determine whether the nucleus is needed during the G0 leads to S transition for the expression of the G1 ts functions. For this purpose, we fused cytoplasts of G0-tsAF8 with whole ts13 cells in G0, and cytoplasts of G0-ts13 with whole tsAF8 cells in G0. Serum stimulation at the nonpermissive temperature induced DNA synthesis in both types of such fusion products. No DNA synthesis was induced by serum stimulation at the nonpermissive temperature in fusion products constructed between either G0-tsAF8 cytoplasts and whole G0-tsAF8 cells or G0-ts13 cytoplasts and whole G0-ts13 cells. These results demonstrate that the information for these two ts functions, which are required for entry of serum-stimulated cells into the S phase, are already present in the cytoplasm of G0 cells--that is, before serum stimulation commits them to the transition from the nonproliferating to the proliferating state.  相似文献   

4.
N Chiu  R Baserga 《Biochemistry》1975,14(14):3126-3132
Quiescent confluent monolayers of WI-38 fibroblasts were stimulated to proliferate by either adding 10% fetal calf serum or by trypsinization and replating at lower density. The length of the prereplicative phase was 12 hr after serum stimulation and 18 hr after trypsinization and replating at lower density. Nuclei were isolated from WI-38 cells at different time intervals after either type of stimulation and their template activity, circular dichroism spectra, and ability to bind ethidium bromide were investigated. All these parameters were similarly increased after either type of stimulation. However, these changes, like the onset of DNA synthesis, were delayed 6 hr in cells trypsinized and replated at lower density. While there were no detectable changes in nuclear protein content after serum stimulation, at least 40% of nuclear protein, mostly nonhistone chromosomal proteins, were lost after trypsinization. The amount of nuclear proteins returned to prestimulation levels only 6-8 hr after replating. These data seem to suggest that nonhistone chromosomal proteins lost by trypsinization are essential for the entrance of WI-38 cells into the "prereplicative phase".  相似文献   

5.
tsAF8, ts13, tsHJ-4, and TK?ts13 cells are G1-specific temperature-sensitive (ts) mutants of BHK cells that do not enter S phase when serumstimulated from quiescence at nonpermissive temperature (39.6°-40.6°). TK?ts13 are, in addition, defective in thymidine kinase. Different G1 functions must be involved in these cells, since the first three cell lines complement each other when forming heterokaryons. We have used these cells to study the role of the nucleus in the cytoplasmic expression of these G1 functions during the transition of cells from the non-proliferating to the proliferating state. We fused cytoplasts from either serumstarved (G0) or serum-stimulated (S) tsAF8 cells with G0-ts13, G0-tsHJ-4, and G0-TK?ts13 recipient cells and determined, after serum stimulation of the fusion products, which type of cytoplasts could complement the defective G1 functions. Cytoplasts from S-tsAF8 cells complemented all three functions, i.e., cybridoids between S phase cytoplasts and ts13 or tsHJ-4 recipient cells entered S at the nonpermissive temperature, and TK?ts13 recipient cells incorporated exogenous thymidine. Cytoplasts isolated from G0-tsAF8 cells (3 days of serum starvation) complemented ts13 cells but not tsHJ-4 and TK?ts13 cells. Cytoplasts from 6-day starved tsAF8 cells lost the complementing capacity for ts13 cells. However, when the 6-day starved tsAF8 cells were fused with G0-ts13 cells, the heterokaryons entered S phase at the nonpermissive temperature. Also, cytoplasts isolated from the 6-day starved cells that were serum stimulated for 40 hr before enucleation regained the capacity to complement ts13 cells. These results demonstrate that three functions required in G1 cannot be detected in the cytoplasm of serum-starved cells, although they are present in the cytoplasm of S-phase cells. These results suggest that a functional nucleus is required for the cytoplasmic appearance of certain G1 functions in serumstimulated cells.  相似文献   

6.
S Handeli  H Weintraub 《Cell》1992,71(4):599-611
The ts41 mutation of Chinese hamster cells was first isolated and characterized by Hirschberg and Marcus (1982) who showed that at nonpermissive temperature, cells accumulate up to 16C equivalents of DNA. Here we show that the mutation is recessive and at nonpermissive temperature, cells replicate their genome normally, but instead of going on into G2, M, and G1, they pass directly into a second S phase. Entry into a second S phase does not require serum nor is it inhibited by G2 checkpoints or mitotic inhibitors. Temperature-shift experiments suggest that the ts41 gene product participates in two functions in the cell cycle: entry into mitosis and inhibition of entry into S phase. The ts41 mutation seems to define a class of cell cycle mutant that couples the sequential events of DNA replication and mitosis.  相似文献   

7.
The expression of genes coding for the four core histones (H2A, H2B, H3, and H4) was studied in tsAF8 cells. These baby hamster kidney-derived cells are a temperature-sensitive (ts) mutant of the cell cycle that arrest in G1 at the restrictive temperature. When serum-deprived tsAF8 cells are stimulated with serum, they enter the S phase at the permissive temperature of 34 degrees C, but are blocked in G1 at the nonpermissive temperature of 39.6 degrees C. Northern blot analysis using cloned human histone DNA probes detected only very low levels of histone RNA either in quiescent tsAF8 cells or in cells serum stimulated at the nonpermissive temperature for 24 h. Cellular levels of histone RNA were markedly increased in cells serum stimulated at 34 degrees C for 24 h. Temperature shift-up experiments after serum stimulation of quiescent populations showed that the amount of histone RNA was related to the number of cells that entered the S phase. Those cells that synthesized histone RNA and entered the S phase were capable of dividing. This is the first demonstration in a mammalian G1-specific ts mutant that the expression of H2A, H2B, H3, and H4 histone genes depends on the entry of cells into the S phase of the cell cycle.  相似文献   

8.
D J Roufa 《Cell》1978,13(1):129-138
ts14 is a temperature-sensitive Chinese hamster lung cell mutant that ceases protein biosynthesis within a short time of transfer to nonpermissive temperature (Haralson and Roufa, 1975; Roufa and Haralson, 1975; Roufa and Reed, 1975). This mutant contains a revertible, presumably a point mutation that renders its 60S ribosomal subunit thermolabile (Haralson and Roufa, 1975). In this report, we describe the relationship between the conditional ability of ts14 to synthesize protein during S phase and the replication of its DNA.After transfer to nonpermissive temperature (39°C), where ts14 synthesizes protein at a rate approximately 20 fold less than wild-type cells, synchronous cultures of the mutant performed all the processes required for replication of their DNA. During prolonged incubations at nonpermissive temperature, S phase ts14 completed approximately one round of DNA replication semi-conservatively as judged by density-transfer experiments. Pulse-labeling experiments performed on S phase cells revealed that ts14 synthesized the intermediates of discontinuous DNA replication at nonpermissive and permissive temperatures at similar rates. In these tests, the mutant was not substantially different from wild-type at both culture temperatures. At the nonpermissive temperature, however, ts14 synthesized significantly less nuclear protein (that is, histone) than did wild-type cells, and the mutant's chromatin appeared deficient in histone by virtue of its increased sensitivity to nuclease.  相似文献   

9.
A temperature-sensitive mutant of BHK, designated is BN-2, shows a rapid drop in 3H-thymidine incorporation along with accumulation of the cells in the G1 phase of the cycle when asynchronous cultures are shifted from 33.5°C to the nonpermissive temperature of 39.5°C. Synchronized cultures of ts BN-2 cells did not enter DNA synthesis when shifted up in G1. Shift-up of cultures at the beginning of the S phase resulted in an approximately normal rate of DNA synthesis for about 2 hr. The rate of DNA synthesis then quickly declined, and the cells became arrested in mid-S after completion of approximately 0.5 rounds of DNA replication. At the same time, the majority of the cells were observed to lose the nuclear membrane and displayed premature chromosome condensation. These events were followed by the appearance of cells containing several micronuclei and eventual cell disruption and death. The nonpermissive temperature appeared to have no effect on either the elongation of short fragments of DNA or the execution of mitosis after the completion of the S phase under permissive conditions. The ts defect in this mutant may directly limit the initiation of DNA synthesis or alter the regulation of chromatin condensation.  相似文献   

10.
ts ET24 cells are a novel temperature-sensitive (ts) mutant for cell proliferation of hamster BHK21 cells. The human genomic DNA which rescued the temperature-sensitive lethality of ts ET24 cells was isolated and screened for an open reading frame in the deposited human genomic library. X chromosomal DBX gene encoding the RNA helicase, DEAD-BOX X isoform, which is homologous to yeast Ded1p, was found to be defective in this mutant. The single point mutation (P267S) was localized between the Motifs I and Ia of the hamster DBX of ts ET24 cells. At the nonpermissive temperature of 39.5 degrees C, ts ET24 cells were arrested in the G1-phase and survived for more than 3 days. In ts ET24 cells, total protein synthesis was not reduced at 39.5 degrees C for 24 h, while mRNA accumulated in the nucleus after incubation at 39.5 degrees C for 17 h. The amount of cyclin A mRNA decreased in ts ET24 cells within 4 h after the temperature shift to 39.5 degrees C, consistent with the fact that the entry into the S-phase was delayed by the temperature shift.  相似文献   

11.
Thymidine kinase and dihydrofolate reductase mRNA levels and enzyme activities were determined in two temperature-sensitive cell lines, tsAF8 and ts13, that growth arrest in the G1 phase of the cell cycle at the restrictive temperature. The levels of thymidine kinase mRNA and enzyme activity increased markedly in both cell lines serum stimulated from quiescence at the permissive temperature. At the nonpermissive temperature, the levels of thymidine kinase mRNA and enzyme activity remain at the low levels of quiescent G0 cells. The levels of dihydrofolate reductase mRNA as well as the enzyme activity also increase when both cell lines are serum stimulated at the permissive temperature. When ts13 cells are serum stimulated at the nonpermissive temperature dihydrofolate reductase enzyme activity declines rapidly and dihydrofolate reductase mRNA is below detectable levels. On the contrary, when tsAF8 cells are serum stimulated at the nonpermissive temperature dihydrofolate reductase enzyme activity increases and mRNA levels are detectable slightly above G0 levels, even though the cells are blocked in the G1 phase. Studies with 2 other cDNA clones (one with an insert whose expression is cell cycle dependent and the other with an insert whose expression is not cell cycle dependent) indicate that the results are not due to aspecific toxicity or the effect of temperature. We conclude that the expression of different genes is affected differently by the ts block in G1, even when these genes are all growth-related.  相似文献   

12.
Exponentially growing, anchorage-dependent fibroblasts were impeded in their progress through the cell cycle as a result of brief trypsinization from the substratum followed by replating. Untransformed mouse (3T3, clone A31), hamster (CHEF/18-1) and human (FS2) fibroblasts were partially inhibited from entering the DNA synthetic (S) phase of the cell cycle for 8 or 12 hours after detachment, even though the cells reattached within an hour of replating and attained a spread morphology 5 or 8 hours later. The decline in the proportion of cells in S phase was accompanied accumulation of cells in G1 as measured by autoradiography and flow microfluorimetry. Cells removed from the substratum by EDTA alone showed identical disturbances of exponential growth. These cell cycle perturbations could be a result of the detachment per se, as opposed to the rounded morphology. Synchronized A31 cells, exposed to colcemid or cytochalasin B for two hours, were not delayed in their entry into S, whereas trypsinization delayed S phase entry by 4 to 5 hours. These drugs disrupt the cytoskeleton without causing detachment. Isotope incorporation experiments revealed no decreases in the rates of protein or RNA synthesis following replating. However, exponentially growing A31 cells, treated for 2 hours with an inhibitor of protein synthesis behaved similarly to those briefly detached from their substratum: 7 hours after treatment, there were fewer cells in S and more cells in G1 relative to untreated cells. Brief treatment with an inhibitor of hn-RNA synthesis did not alter the cell cycle distribution of these fibroblasts. Three tumorogenic A31 derivatives were less affected by brief detachment from the substratum than were the untransformed cells. The derivative exhibiting the least in vitro growth control (an SV-40 transformant) showed the least sensitivity to trypsinization, while that derivative having the most in vitro growth control (a Moloney sarcoma virus transformant) was most sensitive. A chemically [benzo(a)pyrene] transformed derivative gave intermediate results with respect to both growth control and sensitivity to detachment from the substratum. The results suggest that as yet unidentified protein(s) necessary for the normal transit through G1 may be quite sensitive to the presence of an anchoring substratum.  相似文献   

13.
A temperature-sensitive cell cycle mutant of the BHK cell line   总被引:19,自引:0,他引:19  
A temperature-sensitive growth mutant derived from the BHK 21 cell Line, ts AF8, was found to have greatly reduced DNA synthesis at the nonpermissive temperature. This reduction is mainly due to a decrease in the frequency of cells synthesizing DNA. Upon shift up, ts AF8 becomes blocked in the G1 phase of the cell cycle. The cells acquire elevated cAMP levels and a unimodal distribution of DNA content, equivalent to that of G1 cells at the permissive temperature, Ts AF8 cells blocked at the G1/S boundary with hydroxyurea will enter S when shifted to the nonpermissive temperature. On the other hand, ts AF8 cells arrested m G1 by serum deprivation and shifted to the nonpermissive temperature at the moment of serum addition do not enter S, while those synchronized by isoleucine deprivation and shifted at the time of isoleucine addition will enter S. These data suggest that the cycle arrest point of the ts AF8 mutation is located in G1 between the blocks induced by serum starvation and isoleucine deprivation. The reduction in DNA synthesis caused by the ts AF8 mutation is not reversed by infection or transformation with Polyoma virus. Mitochondrial DNA continues to be synthesized at wild-type levels at the nonpermissive temperature.  相似文献   

14.
tsAF8 cells are temperature-sensitive (ts) mutants of BHK-21 cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. When made quiescent by serum restriction, they can be stimulated to enter the S phase by 10% serum at 34 degrees C, but not at 40.6 degrees C. Infection by adenovirus type 2 or type 5 stimulates cellular DNA synthesis in tsAF8 cells at both 34 and 40.6 degrees C. Infection of these cells with deletion Ad5dl312, Ad5dl313, Ad2 delta p305, and Ad2+D1) and temperature-sensitive (H5ts125, H5ts36) mutants of adenovirus indicates that the expression of both early regions 1A and 2 is needed to induce quiescent tsAF8 cells to enter the S phase at the permissive temperature. This finding has been confirmed by microinjection of selected adenovirus DNA fragments into the nucleus of tsAF8 cells. In addition, we have shown that additional viral functions encoded by early regions 1B and 5 are required for the induction of cellular DNA synthesis at the nonpermissive temperature.  相似文献   

15.
Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.  相似文献   

16.
Isolation of a G0-specific ts mutant from a Fischer rat cell line, 3Y1   总被引:2,自引:0,他引:2  
A ts mutant clone, tsJT60, was isolated from Fisher rat cell line, 3Y1. During the exponential growth at both 34 and 39.5 degrees C, tsJT60 did not appear as ts mutant cells. However, once entered resting state (G0) under serum deprivation at the confluent state, they could re-enter S phase at 34 degrees C but could not at 39.5 degrees C following the stimulation of cells either by the addition of fetal bovine serum or by trypsinization and replating. These and other results suggested that tsJT60 is a G0-specific ts mutant, i.e., the cells have ts defect(s) in the function which is required for the stimulation from the resting state to S phase but not for the progression of the cell cycle in an exponential growth phase.  相似文献   

17.
A mammalian somatic "cell cycle" mutant defective in G1   总被引:5,自引:0,他引:5  
Variants or “mutants” temperature-sensitive (ts) for growth have been isolated by selection from a near-diploid mouse cell line. Thus far. 10 ts mutants which grow normally at 33° C, but not at 39° C, have been isolated. These ts mutants were then studied to determine if any manifested their defect at a unique point or stage in the cell cycle. This type of ts mutant is termed a “cell cycle” mutant. The first screen involves observing individual cells of an asynchronous culture for residual division after a shift from 33° C (permissive temperature) to 39° (nonpermissive temperature). A cell cycle mutant should show some fraction of the cells dividing only once at a normal rate after the shift. The ts variant B54 met this first criterion for a cell cycle mutant (i.e., 50% residual division) and was further analyzed. The second screening technique monitors (1) the rate of entry into S, (2) the length of G2, and (3) the rate and duration of cells entering mitosis after a shift of an asynchronous culture to 39°. This experiment with B54 revealed that cells in G1 at the time of the shift to 39° failed to enter S while cells already into S completed the cycle at 39°. These results suggest that B54 is defective in a G1 function which is required for entry into S, but which is no longer needed once cells have entered S. Other results are presented which also support this hypothesis. In addition the ts function of B54 is apparently required for recovery from a “high density” G1 arrest.  相似文献   

18.
Three procedures were used to induce dihydrofolate reductase synthesis in quiescent cultures of methotrexate resistant mouse fibroblasts: (1) lytic infection with polyoma virus, (2) growth stimulation by replating cells at lower density in fresh cell culture medium, and (3) the addition of fresh medium to confluent cells. Following polyoma infection, an increase in the percentage of S-phase cells began at approximately 20 hours; dihydrofolate reductase synthesis also increased following a lag of 20 hours or more, and continued to increase throughout the late phase of lytic infection, reaching values nearly fivefold greater than that originally present in the quiescent cells. When quiescent cells received fresh medium (with or without replating), the percentage of cells in S phase began to increase by 10 hours and was accompanied by an increase in dihydrofolate reductase synthesis which reached a maximum by approximately 25 hours. These observations show that the initial entry of cells into S phase following mitogenic stimulation is associated with an induction of dihydrofolate reductase synthesis. Dibutyryl cyclic AMP blocked the stimulation of dihydrofolate reductase synthesis and the increase in the percentage of S-phase cells that resulted from the addition of fresh medium to confluent cells. When dibutyryl cyclic AMP was added at various times following the addition of fresh medium, the block in the induction of dihydrofolate reductase synthesis was correlated with a corresponding block in the increase in S-phase cells. These results suggest that dibutyryl cyclic AMP blocks cells at a point in Gl prior to either the induction of dihydrofolate reductase synthesis or the beginning of S phase. The relationship between the control of dihydrofolate reductase synthesis and entry into S phase suggests some form of coordinate control over these two parameters.  相似文献   

19.
G Poste  M K Flood 《Cell》1979,17(4):789-800
Chick embryo (CE) fibroblasts and normal rat kidney (NRK) cells transformed by temperature-sensitive (ts) mutants of avian sarcoma virus (NY68, LA23, LA24, LA25, LA29, LA31, GI201, GI202, GI251, GI253 induce tumors on the chorioallantoic membrane (CAM) of chick eggs at temperatures that correspond to the permissive and nonpermissive temperatures used to induce conditional expression of the "transformed" phenotype in these cells when cultured in vitro. Chick embryo cells infected with transformation-defective mutants of ASV (td101, td108) or RAV-50 were nontumorigenic under the same conditions, as were nontransformed CE and NRK cells. This indicates that the CAM is not an unusually susceptible substrate for cell growth and that the ability of tsASV-transformed cells to form tumors at nonpermissive temperatures reflects their true tumorigenicity. In contrast, a ts mutant chemically transformed rat liver cell line, ts-223, only formed tumors on the CAM under permissive conditions. The wild-type parent cells (W-8) of this mutant produced tumors at both permissive and nonpermissive temperatures. Direct implantation of microprobe thermometers into tumors caused by ts-ASV-transformed cells at nonpermissive temperatures confirmed that tumor formation occurred in a stable temperature environment and was not due to temperature fluctuations which might have created semi-permissive conditions for tumor growth. Cells isolated from tumors formed at nonpermissive temperatures and recultured in vitro displayed temperature-dependent hexose transport and colony formation in agar similar to the orginal parent cell inoculum. Similarly, virus recovered from tumors at nonpermissive temperatures retained the ts mutation.  相似文献   

20.
E36 ts24 is a temperature-sensitive cell cycle mutant which has been derived from the Chinese hamster lung cell line E36. This mutant is arrested in phase S when incubated at the restrictive temperature (40.3 degrees C) for growth. At this temperature, proliferation of the mutant cells ceases after 10 h. About 2 h earlier, DNA synthesis is arrested. These kinetic studies indicate that the execution point of the mutant cells is in early S phase well beyond the G1/S boundary. The pattern of replication bands in E36 ts24 cell grown for 9 h at 40.3 degrees C strengthen the kinetic studies and map the execution point to early S phase. The exact point of arrest of the mutant cells in phase S was mapped in early S phase near the execution point. At the point of arrest the cells continue to synthesize DNA at at a high rate but practically all of the newly synthesized DNA is degraded. This high rate of DNA degradation is limited to nascent DNA at the point of arrest. In the presence of 5-bromodeoxyuridine (5-BudR), the last E36 ts24 cells which reach mitosis at the restrictive temperature for growth show asymmetric replication bands which illustrate DNA degradation and resynthesis occurring in these cells at 40.3 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号