首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(hydroxyalkanoates) (PHAs) constitute biodegradable polyesters and are considered among the most promising candidates to replace common petrochemical plastics in various applications. To date, all commercial processes for PHA production employ microbial discontinuous fed-batch fermentations. These processes feature drawbacks such as varying product quality and the inevitable periods of downtime for preparation and post-treatment of the bioreactor equipment. An unprecedented approach to PHA production was chosen in the presented work using a multistage system consisting of five continuous stirred tank reactors in series (5-SCR), which can be considered as a process engineering substitute of a continuous tubular plug flow reactor. The first stage of the reactor cascade is the site of balanced bacterial growth; thereafter, the fermentation broth is continuously fed from the first into the subsequent reactors, where PHA accumulation takes place under nitrogen-limiting conditions. Cupriavidus necator was used as production strain. The focus of the experimental work was devoted to the development of a PHA production process characterized by high productivity and high intracellular polymer content. The results of the experimental work with the reactor cascade demonstrated its potential in terms of volumetric and specific productivity (1.85 g L−1 h−1 and 0.100 g g−1 h−1, respectively), polymer content (77%, w/w) and polymer properties (M w = 665 kg/mol, PDI = 2.6). Thus, implementing the technology for 5-SCR production of PHB results in an economically viable process. The study compares the outcome of the work with literature data from continuous two-stage PHA production and industrial PHA production in fed-batch mode.  相似文献   

2.
This work conducted a denitrifying sulfide removal (DSR) test in an expanded granular sludge bed (EGSB) reactor at sustainable loadings of 6.09 kg m−3 day−1 for sulfide, 3.11 kg m−3 day−1 for nitrate–nitrogen, and 3.27 kg m−1 day−1 for acetate–carbon with >93% efficiency, which is significantly higher than those reported in literature. Strains Pseudomonas sp., Nitrincola sp., and Azoarcus sp. very likely yield heterotrophs. Strains Thermothrix sp. and Sulfurovum sp. are the autotrophs required for the proposed high-rate EGSB-DSR system. The EGSB-DSR reactor experienced two biological breakdowns, one at loadings of 4.87, 2.13, and 1.82 kg m−3 day−1; reactor function was restored by increasing nitrate and acetate loadings. Another breakdown occurred at loadings of up to 8.00, 4.08, and 4.50 kg m−1 day−1; the heterotrophic denitrification pathway declined faster than the autotrophic pathway. The mechanism of DSR breakdown is as follows. High sulfide concentration inhibits heterotrophic denitrifiers, and the system therefore accumulates nitrite. Autotrophic denitrifiers are then inhibited by the accumulated nitrite, thereby leading to breakdown of the DSR process.  相似文献   

3.
An asymmetric hydrogen-transfer biocatalyst consisting of mutated Rhodococcus phenylacetaldehyde reductase (PAR) or Leifsonia alcohol dehydrogenase (LSADH) was applied for some water-soluble ketone substrates. Among them, 4-hydroxy-2-butanone was reduced to (S)/(R)-1,3-butanediol, a useful intermediate for pharmaceuticals, with a high yield and stereoselectivity. Intact Escherichia coli cells overexpressing mutated PAR (Sar268) or LSADH were directly immobilized with polyethyleneimine or 1,6-diaminehexane and glutaraldehyde and evaluated in a batch reaction. This system produced (S)-1,3-butanediol [87% enantiomeric excess (e.e.)] with a space time yield (STY) of 12.5 mg h−1 ml−1 catalyst or (R)-1,3-butanediol (99% e.e.) with an STY of 60.3 mg h−1 ml−1 catalyst, respectively. The immobilized cells in a packed bed reactor continuously produced (R)-1,3-butanediol with a yield of 99% (about 49.5 g/l) from 5% (w/v) 4-hydroxy-2-butanoate over 500 h.  相似文献   

4.
The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V max = 5.80 mmol l−1 min−1 g enzyme−1, K m,A = 0.70 mmol l−1 g enzyme−1, K m,B = 115.48 mmol l−1 g enzyme−1, K i = 11.25 mmol l−1 g enzyme−1. The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07±0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.  相似文献   

5.
A flat plate, multi-pass air lift reactor (FPALR) for the culture of photosynthetic organisms was constructed from twin wall acrylic sheet and its performance characterised. When operated at an air input of 2.01 min−1 the multi-pass system had a Reynolds number of 5200 indicating fully turbulent flow. Chlorella vulgaris 211/11c was found to have a stationary phase biomass of 1.48 g 1−1 when grown in the flat plate air lift reactor (FPALR) at 100 μmol m−2s−1 compared to 1.11 g 1−1 when cultured in the continually stirred tank reactor (CSTR) at the same PFD (photon flux density). The same organism cultured at 200 μmol m−2s−1 achieved a stationary phase biomass of 1.71 g 1−1 in the FPALR. In contrast, Scenedesmus sp. produced a stationary phase biomass of 2.27 g1−1 and 1.27 g1−1, when cultured at 100 μmol m−2s−1 in the FPALR and the CSTR respectively. The growth rates of both organisms were also higher in the PFALR.  相似文献   

6.
Rhodotorula sp. produced a high yield of levanase (12.5 nkat/mL) in shake flasks in basal medium containing 1% maltose as the sole carbon source. Among the different carbon sources used, maltose was found to be the best for levanase production. The optimum temperature and pH for levanase production were 30°C and 6, respectively. In a batch reactor the enzyme productivity was higher (500 nkat L−1 h−1) than in shaken flasks (347 nkat L−1 h−1).  相似文献   

7.
Extracellular laccase from Panus tigrinus CBS 577.79 was produced in a bubble-column reactor using glucose-containing medium supplemented with 2,5-xylidine under conditions of nitrogen sufficiency. The main laccase isoenzyme was purified to apparent homogeneity by ultra-filtration, anion-exchange chromatography and gel filtration that led to a purified enzyme with a specific activity of 317 IU (mg protein)−1 and a final yield of 66%. Laccase was found to be a monomeric protein with a molecular mass of 69.1 kDa, pI of 3.15 and 6.9% N-glycosylation of the high mannose type. Temperature and pH optima were 55°C and 3.75 (2,6-dimethoxyphenol as substrate). At 50 and 60°C, the enzyme half-lives were 281 and 25 min, respectively. The P. tigrinus laccase oxidized a wide range of both naturally occurring and synthetic aromatic compounds: the highest catalytic efficiencies were for 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic) acid and 2,6-dimethoxyphenol (5.99 × 106 and 3.07 × 106 M−1 s−1, respectively). Catalytic rate constants for typical N–OH redox mediators, such as 1-hydroxybenzotriazole (2.6 s−1), violuric acid (8.4 s−1) and 2,2,6,6-tetramethylpiperidin-N-oxide radical (7.8 s−1), were found to be higher than those reported for other high redox potential fungal laccases.  相似文献   

8.
Anaerobic digestions have been proved more successful than aerobic systems for the degradation and destruction of dye-containing wastewaters. The performance of a hybrid up flow anaerobic sludge-filter bed (UASFB) reactor was tested with a synthetic wastewater containing Crystal violet (CV) as a carbon source and sodium acetate as a co-substrate. Continuous feeding of the reactor started with an initial OLR of 0.9 g COD/l-d and then it was increased step wise to 4 g COD l−1 d−1, while maintaining constant HRT (24 h). The optimum pH value and temperature for decolorization of crystal violet by this mixed culture species under anaerobic conditions were found to be 8–9 and 30–35°C respectively. N,N-dimethylaminophenol and N,N-bis (dimethylamino) benzophenone (Michler’s Ketone) were detected as the degradative metabolites of Crystal Violet. Subsequently, N,N-dimethylaminophenol was further degraded to aniline in the reactor whereas Michler’s ketone was not degraded under anaerobic conditions. The UASFB bioreactor was able to remove the CV completely up to a loading rate of 100 mg CV l−1d−1.  相似文献   

9.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from wheat straw hydrolysate (WSH) in batch cultures using Clostridium beijerinckii P260. In control fermentation 48.9 g L−1 glucose (initial sugar 62.0 g L−1) was used to produce 20.1 g L−1 ABE with a productivity and yield of 0.28 g L−1 h−1 and 0.41, respectively. In a similar experiment where WSH (60.2 g L−1 total sugars obtained from hydrolysis of 86 g L−1 wheat straw) was used, the culture produced 25.0 g L−1 ABE with a productivity and yield of 0.60 g L−1 h−1 and 0.42, respectively. These results are superior to the control experiment and productivity was improved by 214%. When WSH was supplemented with 35 g L−1 glucose, a reactor productivity was improved to 0.63 g L−1 h−1 with a yield of 0.42. In this case, ABE concentration in the broth was 28.2 g L−1. When WSH was supplemented with 60 g L−1 glucose, the resultant medium containing 128.3 g L−1 sugars was successfully fermented (due to product removal) to produce 47.6 g L−1 ABE, and the culture utilized all the sugars (glucose, xylose, arabinose, galactose, and mannose). These results demonstrate that C. beijerinckii P260 has excellent capacity to convert biomass derived sugars to solvents and can produce over 28 g L−1 (in one case 41.7 g L−1 from glucose) ABE from WSH. Medium containing 250 g L−1 glucose resulted in no growth and no ABE production. Mixtures containing WSH + 140 g L−1 glucose (total sugar approximately 200 g L−1) showed poor growth and poor ABE production. Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

10.
The β-galactosidase from Talaromyces thermophilus CBS 236.58 immobilized onto Eupergit C produced galacto-oligosaccharides (GalOS) in batchwise and continuous packed-bed mode of operation. A maximum yield of GalOS of 12, 39 and 80 g l−1 was obtained for initial lactose concentrations of 50, 100 and 200 g l−1, respectively, for batch conversion experiments. The immobilized enzyme could be re-used for several cycles for lactose hydrolysis and transformation. The maximum GalOS concentration of approximately 50 g l−1 was obtained with the dilution rate of 0.375 h−1 in a packed-bed reactor, when using an initial lactose concentration of 200 g l−1. Continuous conversion of lactose in the packed-bed reactor resulted in the formation of relatively more trisaccharides than when employing the immobilized enzyme in discontinuous mode of operation.  相似文献   

11.
Thermophilic acidification of dairy wastewater   总被引:2,自引:0,他引:2  
Acidification of simulated dairy wastewater was conducted in an upflow reactor at 55 °C. Results showed that the degree of acidification decreased with the increase in chemical oxygen demand (COD) loading rate, from 60.8% at 4 g l−1 day−1 to 27.1% at 24 g l−1 day−1. Carbohydrate was readily degraded at all loading rates, but degradation of protein and lipid decreased with the increase in loading rate. Most carbohydrate degradation occurred at the reactor bottom, whereas protein was degraded mainly after the carbohydrate became depleted. The predominant acidification products were acetate, propionate, butyrate and ethanol, whereas formate, i-butyrate, valerate, i-valerate, caproate, lactate, methanol, propanol and butanol were present in lesser quantities. The increase in loading rate resulted in the increase of propionate and the decrease of acetate, but had little effect on ethanol and butyrate productions. Only 2.5–8.8% of influent COD was converted to hydrogen and methane. The biomass yield was 0.30–0.43 mg VSS mg−1 COD. Received: 8 December 1999 / Received revision: 14 February 2000 / Accepted: 25 February 2000  相似文献   

12.
A spiral packed-bed bioreactor inoculated with microorganisms obtained from activated sludge was used to conduct a feasibility study for phenol removal. The reactor was operated continuously at various phenol loadings ranging from 53 to 201.4 g m−3 h−1, and at different hydraulic retention times (HRT) in the range of 20–180 min to estimate the performance of the device. The results indicated that phenol removal efficiency ranging from 82.9 to 100% can be reached when the reactor is operated at an HRT of 1 h and a phenol loading of less than 111.9 g m−3 h−1. At an influent phenol concentration of 201.4 g m−3, the removal efficiency increased from 18.6 to 76.9% with an increase in the HRT (20–120 min). For treatment of phenol in the reactor, the maximum biodegradation rate (V m) was 1.82 mg l−1 min−1; the half-saturation constant (K s), 34.95 mg l−1.  相似文献   

13.
Xylose-to-xylitol conversion was investigated in a bench-scale bioreactor using Candida guilliermondii cells entrapped within polyvinyl alcohol-hydrogel beads in a system operated in repeated-batch mode with cell recycling. Yeast-viable cells were immobilized in the support using the freezing–thawing method. Bioconversion assays were performed in a stirred tank reactor operated at 400-rpm agitation speed, 30°C temperature, and 1.04-vvm air flow rate. The system was explored during six successive cycles, and a small decrease in the conversion performance in the fifth cycle was observed, but the biocatalytic activity of the microorganism was recovered in the sixth cycle after washing the particles. During the process, the hydrogel beads maintained their shape and size without appreciable deterioration. Xylitol production, yield factor, and volumetric productivity increased with progressive recycling of cells and achieved their maximum values (P F = 39.7 g l−1; Y P/S = 0.77 g g−1; Q P = 0.53 g l−1 h−1, respectively) after the third cell recycling, probably because of cells’ adaptation to the medium.  相似文献   

14.
Singh SS  Dikshit AK 《Biodegradation》2011,22(6):1109-1117
Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash was studied in a fungal stirred tank aerobic reactor without dilution of wastewater. Aspergillus niger isolate IITB-V8 was used as the fungal inoculum. The main objectives of the study were to optimize the stirrer speed for achieving maximum decolourization and to determine the kinetic parameters. A mathematical model was developed to describe the batch culture kinetics. Volumetric oxygen transfer coefficient (k L a) was obtained using dynamic method. The maximum specific growth rate and growth yield of fungus were determined using Logistic equation and using Luedeking–Piret equation. 150 rpm was found to be optimum stirrer speed for overall decolourization of 87%. At the optimum stirrer speed, volumetric oxygen transfer coefficient (k L a) was 0.4957 min−1 and the maximum specific growth rate of fungus was 0.224 h−1. The values of yield coefficient (Y x/s) and maintenance coefficient (m s) were found to be 0.48 g cells (g substrate)−1 and 0.015 g substrate (g cells)−1 h−1.  相似文献   

15.
A new method based on sulfide utilizing autotrophic denitrification was adopted to remove nitrate from wastewater and to reuse spent sulfidic caustic containing high sulfide and alkalinity levels. The experiments were performed using a bench-scale upflow anoxic hybrid growth reactor (UAHGR) and an upflow anoxic suspended growth reactor (UASGR) to characterize the stoichiometric relationship between sulfur and nitrate in the process as well as the performance of the reactors. The level of nitrate removal from the UAHGR and UASGR were maintained at over 90% at a nitrate loading rate ranging from 0.15∼0.40 kgNO3 /m3·d and no significant nitrite accumulation was observed in either reactor. Although the influent pH values were higher than the optimum range of autotrophic denitrification at 8.7∼10.1, the effluent pH was stable at 7.2∼7.9 due to the production of hydrogen ions during operation. The stoichiometric ratio of sulfate production to nitrate removal was 1.5∼2.1 mgSO4 2−/mgNO3 in both reactors. A comparison of the reactor performance revealed that the chemical parameters of the UAHGR operation corresponded to a plug flow like type reactor while the chemical parameters of the UASGR operation corresponded to a completely stirred tank reactor like type reactor. UAHGR did not require sludge recycling due to the packed media while UASGR required 300∼700% sludge recycling. Therefore, spent sulfidic caustic could be used in the sulfur utilizing autotrophic denitrification processes as substrate and alkalinity sources.  相似文献   

16.
The gene mel1, encoding α-galactosidase in Schizosaccharomyces pombe, and the gene bgl2, encoding and α-glucosidase in Trichoderma reesei, were isolated and co-expressed in the industrial ethanolproducing strain of Saccharomyces cerevisiae. The resulting strains were able to grow on cellobiose and melibiose through simultaneous production of sufficient extracellular α-galactosidase and β-glucosidase activity. Under aerobic conditions, the growth rate of the recombinant strain GC1 co-expressing 2 genes could achieve 0.29 OD600 h−1 and a biomass yield up to 7.8 g l−1 dry cell weight on medium containing 10.0 g l−1 cellobiose and 10.0 g l−1 melibiose as sole carbohydrate source. Meanwhile, the new strain of S. cerevisiae CG1 demonstrated the ability to directly produce ethanol from microcrystalline cellulose during simultaneous saccharification and fermentation process. Approximately 36.5 g l−1 ethanol was produced from 100 g of cellulose supplied with 5 g l−1 melibose within 60 h. The yield (g of ethanol produced/g of carbohydrate consumed) was 0.44 g/g, which corresponds to 88.0% of the theoretical yield.  相似文献   

17.
Cyclodextrin glucanotransferase (CGTase) fromThermoanaerobacter sp. was adsorbed on the ion exchange resin Amberlite IRA-900. The optimum conditions for the immobilization of the CGTase were pH 6.0 and 600 U CGTase/g resin, and the maximum yield of immobilization was around 63% on the basis of the amount ratio of the adsorbed enzyme to the initial amount in the solution. Immobilization of CGTase shifted the optimum temperature for the enzyme to produce transglycosylated xylitol from 70°C to 90°C and improved the thermal stability of immobilized CGTase, especially after the addition of soluble starch and calcium ions. Transglycosylated xylitol was continuously produced using immobilized CGTase in the column type packed bed reactor, and the operating conditions for maximum yield were 10% (w/v) dextrin (13 of the dextrose equivalent) as the glycosyl donor, 10% (w/v) xylitol as the glycosyl acceptor, 20 mL/h of medium flow rate, and 60°C. The maximum yield of transglycosylated xylitol and productivity were 25% and 7.82 g·L−1·h−1, respectively. The half-life of the immobilized CGTase in a column type packed bed reactor was longer than 30 days.  相似文献   

18.
This paper presents a strategy for preparing an efficient immobilised alcohol dehydrogenase preparation for a gas-phase reaction. The effects of additives such as buffers and sucrose on the immobilisation efficiency (residual activity and protein loading) and on the gas-phase reaction efficiency (initial reaction rate and half-life) of Thermoanaerobacter sp. alcohol dehydrogenase were studied. The reduction of acetophenone to 1-phenylethanol under in situ cofactor regeneration using isopropanol as co-substrate was used as a model reaction at fixed reaction conditions (temperature and thermodynamic activities). A strongly enhanced thermostability of the enzyme in the gas-phase reaction was achieved when the enzyme was immobilised with 50 mM phosphate buffer (pH 7) containing sucrose five times the protein amount (on weight/weight basis). This resulted in a remarkable productivity of 200 g L−1 day−1 even at non-optimised reaction conditions. The interaction of additives with the enzyme and water affects the immobilisation and gas-phase efficiencies of the enzyme. However, it was not possible to predict the effect of additives on the gas-phase reaction efficiency even after knowing their effect on the immobilisation efficiency.  相似文献   

19.
Biohydroxylation of 2-cyclopentyl-1,3-benzoxazole with the filamentous fungus Cunninghamella blakesleeana DSMZ 1906 was studied in a 15-l stirred tank reactor. The aim of the work was to avoid substrate limitation through sub-optimal mixing by formation of pellets with a uniform pellet size distribution of 250–500 μm, obtained at an inoculum concentration of 107 spores ml−1 and an agitation rate of 390 rpm. Due to the high toxicity of the educt, 2-cyclopentyl-1,3-benz- oxazole, on the fungus, the medium composition, the time of educt addition, and the educt starting concentration were optimized to reach high educt tolerance and hydroxylation activity. A good maintenance of biotransformation capacity was obtained without excessive loss of activity of the biocatalyst by addition of 30 mg 2-cyclopentyl-1,3-benzoxazole/g biomass (cell dry mass) during the stationary phase in a medium which was optimized in batch fermentations with experimental designs. An increase in product yield and quality (enantiomeric excess) was achieved by developing feeding strategies combining the educt and medium components. The resulting fermentation broth contained 450 mg l−1 of the product (1S,3S)-3-(benz-1,3-oxazol- 2-yl)cyclopentan-1-ol with an enantiomeric excess of 95%, which represents a 48% increase over former reported results. Received: 8 July 1999 / Accepted: 2 October 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号