首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
Recent admixture between genetically differentiated populations can result in high levels of association between alleles at loci that are <=10 cM apart. The transmission/disequilibrium test (TDT) proposed by Spielman et al. (1993) can be a powerful test of linkage between disease and marker loci in the presence of association and therefore could be a useful test of linkage in admixed populations. The degree of association between alleles at two loci depends on the differences in allele frequencies, at the two loci, in the founding populations; therefore, the choice of marker is important. For a multiallelic marker, one strategy that may improve the power of the TDT is to group marker alleles within a locus, on the basis of information about the founding populations and the admixed population, thereby collapsing the marker into one with fewer alleles. We have examined the consequences of collapsing a microsatellite into a two-allele marker, when two founding populations are assumed for the admixed population, and have found that if there is random mating in the admixed population, then typically there is a collapsing for which the power of the TDT is greater than that for the original microsatellite marker. A method is presented for finding the optimal collapsing that has minimal dependence on the disease and that uses estimates either of marker allele frequencies in the two founding populations or of marker allele frequencies in the current, admixed population and in one of the founding populations. Furthermore, this optimal collapsing is not always the collapsing with the largest difference in allele frequencies in the founding populations. To demonstrate this strategy, we considered a recent data set, published previously, that provides frequency estimates for 30 microsatellites in 13 populations.  相似文献   

2.
Disease association with a genetic marker is often taken as a preliminary indication of linkage with disease susceptibility. However, population subdivision and admixture may lead to disease association even in the absence of linkage. In a previous paper, we described a test for linkage (and linkage disequilibrium) between a genetic marker and disease susceptibility; linkage is detected by this test only if association is also present. This transmission/disequilibrium test (TDT) is carried out with data on transmission of marker alleles from parents heterozygous for the marker to affected offspring. The TDT is a valid test for linkage and association, even when the association is caused by population subdivision and admixture. In the previous paper, we did not explicitly consider the effect of recent history on population structure. Here we extend the previous results by examining in detail the effects of subdivision and admixture, viewed as processes in population history. We describe two models for these processes. For both models, we analyze the properties of (a) the TDT as a test for linkage (and association) between marker and disease and (b) the conventional contingency statistic used with family data to test for population association. We show that the contingency test statistic does not have a chi 2 distribution if subdivision or admixture is present. In contrast, the TDT remains a valid chi 2 statistic for the linkage hypothesis, regardless of population history.  相似文献   

3.
Ghosh S  Reich T 《Human heredity》2002,53(4):181-186
The traditional transmission disequilibrium test (TDT) (Spielman et al., 1993) is a powerful test for association only in the presence of linkage. Since allele transmissions from homozygous parents do not carry any information on linkage, the TDT statistic uses data only on heterozygous parents. However, homozygous parents carry information on association between alleles at a marker locus and a disease locus. In this article, we explore whether inclusion of homozygous parents increases the power to detect association. The resultant test statistic follows a chi(2) distribution with 2 degrees of freedom. Monte-Carlo simulations are included to compare the performance of this test with the traditional TDT under different disease models.  相似文献   

4.
An entropy-based statistic for genomewide association studies   总被引:8,自引:0,他引:8       下载免费PDF全文
Efficient genotyping methods and the availability of a large collection of single-nucleotide polymorphisms provide valuable tools for genetic studies of human disease. The standard chi2 statistic for case-control studies, which uses a linear function of allele frequencies, has limited power when the number of marker loci is large. We introduce a novel test statistic for genetic association studies that uses Shannon entropy and a nonlinear function of allele frequencies to amplify the differences in allele and haplotype frequencies to maintain statistical power with large numbers of marker loci. We investigate the relationship between the entropy-based test statistic and the standard chi2 statistic and show that, in most cases, the power of the entropy-based statistic is greater than that of the standard chi2 statistic. The distribution of the entropy-based statistic and the type I error rates are validated using simulation studies. Finally, we apply the new entropy-based test statistic to two real data sets, one for the COMT gene and schizophrenia and one for the MMP-2 gene and esophageal carcinoma, to evaluate the performance of the new method for genetic association studies. The results show that the entropy-based statistic obtained smaller P values than did the standard chi2 statistic.  相似文献   

5.
Linkage disequilibrium testing when linkage phase is unknown   总被引:2,自引:0,他引:2  
Schaid DJ 《Genetics》2004,166(1):505-512
Linkage disequilibrium, the nonrandom association of alleles from different loci, can provide valuable information on the structure of haplotypes in the human genome and is often the basis for evaluating the association of genomic variation with human traits among unrelated subjects. But, linkage phase of genetic markers measured on unrelated subjects is typically unknown, and so measurement of linkage disequilibrium, and testing whether it differs significantly from the null value of zero, requires statistical methods that can account for the ambiguity of unobserved haplotypes. A common method to test whether linkage disequilibrium differs significantly from zero is the likelihood-ratio statistic, which assumes Hardy-Weinberg equilibrium of the marker phenotype proportions. We show, by simulations, that this approach can be grossly biased, with either extremely conservative or liberal type I error rates. In contrast, we use simulations to show that a composite statistic, proposed by Weir and Cockerham, maintains the correct type I error rates, and, when comparisons are appropriate, has similar power as the likelihood-ratio statistic. We extend the composite statistic to allow for more than two alleles per locus, providing a global composite statistic, which is a strong competitor to the usual likelihood-ratio statistic.  相似文献   

6.
It is widely believed that, if a genetic marker shows a transmission distortion in patients by the transmission/disequilibrium test (TDT), then a transmission distortion in healthy siblings would be seen in the opposite direction. This is also the case in a complex disease. Furthermore, it has been suggested that replacing the McNemar statistics of the TDT with a test of heterogeneity between transmissions to affected and unaffected children could increase the power to detect disease association. To test these two hypotheses empirically, we analyzed the transmission of HLA-DQA1-DQB1 haplotypes in 526 Norwegian families with type 1 diabetic children and healthy siblings, since some DQA1-DQB1 haplotypes represent major genetic risk factors for type 1 diabetes. Despite the strong positive and negative disease associations with particular DQ haplotypes, we observed no significant deviation from 50% for transmission to healthy siblings. This could be explained by the low penetrance of susceptibility alleles, together with the fact that IDDM loci also harbor strongly protective alleles that can override the risk contributed by other loci. Our results suggest that, in genetically complex diseases, detectable distortion in transmission to healthy siblings should not be expected. Furthermore, the original TDT seems more powerful than a heterogeneity test.  相似文献   

7.
Family data teamed with the transmission/disequilibrium test (TDT), which simultaneously evaluates linkage and association, is a powerful means of detecting disease-liability alleles. To increase the information provided by the test, various researchers have proposed TDT-based methods for haplotype transmission. Haplotypes indeed produce more-definitive transmissions than do the alleles comprising them, and this tends to increase power. However, the larger number of haplotypes, relative to alleles at individual loci, tends to decrease power, because of the additional degrees of freedom required for the test. An optimal strategy would focus the test on particular haplotypes or groups of haplotypes. In this report we develop such an approach by combining the theory of TDT with that of measured haplotype analysis (MHA). MHA uses the evolutionary relationships among haplotypes to produce a limited set of hypothesis tests and to increase the interpretability of these tests. The theory of our approach, called the "evolutionary tree" (ET)-TDT, is developed for two cases: when haplotype transmission is certain and when it is not. Simulations show the ET-TDT can be more powerful than other proposed methods under reasonable conditions. More importantly, our results show that, when multiple polymorphisms are found within the gene, the ET-TDT can be useful for determining which polymorphisms affect liability.  相似文献   

8.
Fan R  Floros J  Xiong M 《Human heredity》2002,53(3):130-145
In this paper, we explore models and tests for association and linkage studies of a quantitative trait locus (QTL) linked to a multi-allele marker locus. Based on the difference between an offspring's conditional trait means of receiving and not receiving an allele from a parent at marker locus, we propose three statistics T(m), T(m,row) and T(m,col) to test association or linkage disequilibrium between the marker locus and the QTL. These tests are composite tests, and use the offspring marginal sample means including offspring data of both homozygous and heterozygous parents. For the linkage study, we calculate the offspring's conditional trait mean given the allele transmission status of a heterozygous parent at the marker locus. Based on the difference between the conditional means of a transmitted and a nontransmitted allele from a heterozygous parent, we propose statistics T(parsi), T(satur), T(gen) and T(m,het) to perform composite tests of linkage between the marker locus and the quantitative trait locus in the presence of association. These tests only use the offspring data that are related to the heterozygous parents at the marker locus. T(parsi) is a parsimonious or allele-wise statistic, T(satur) and T(gen )are satured or genotype-wise statistics, and T(m,het) compares the row and column sample means for offspring data of heterozygous parents. After comparing the powers and the sample sizes, we conclude that T(parsi) has higher power than those of the bi-allele tests, T(satur), T(gen), and T(m,het). If there is tight linkage between the marker and the trait locus, T(parsi) is powerful in detecting linkage between the marker and the trait locus in the presence of association. By investigating the goodness-of-fit of T(parsi), we find that T(satur) does not gain much power compared to that of T(parsi). Moreover, T(parsi) takes into account the pattern of the data that is consistent with linkage and linkage disequilibrium. As the number of alleles at the marker locus increases, T(parsi) is very conservative, and can be useful even for sparse data. To illustrate the usefulness and the power of the methods proposed in this paper, we analyze the chromosome 6 data of the Oxford asthma data, Genetic Analysis Workshop 12.  相似文献   

9.
The transmission disequilibrium test (TDT) has been utilized to test the linkage and association between a genetic trait locus and a marker. Spielman et al. (1993) introduced TDT to test linkage between a qualitative trait and a marker in the presence of association. In the presence of linkage, TDT can be applied to test for association for fine mapping (Martin et al., 1997; Spielman and Ewens, 1996). In recent years, extensive research has been carried out on the TDT between a quantitative trait and a marker locus (Allison, 1997; Fan et al., 2002; George et al., 1999; Rabinowitz, 1997; Xiong et al., 1998; Zhu and Elston, 2000, 2001). The original TDT for both qualitative and quantitative traits requires unrelated offspring of heterozygous parents for analysis, and much research has been carried out to extend it to fit for different settings. For nuclear families with multiple offspring, one approach is to treat each child independently for analysis. Obviously, this may not be a valid method since offspring of one family are related to each other. Another approach is to select one offspring randomly from each family for analysis. However, with this method much information may be lost. Martin et al. (1997, 2000) constructed useful statistical tests to analyse the data for qualitative traits. In this paper, we propose to use mixed models to analyse sample data of nuclear families with multiple offspring for quantitative traits according to the models in Amos (1994). The method uses data of all offspring by taking into account their trait mean and variance-covariance structures, which contain all the effects of major gene locus, polygenic loci and environment. A test statistic based on mixed models is shown to be more powerful than the test statistic proposed by George et al. (1999) under moderate disequilibrium for nuclear families. Moreover, it has higher power than the TDT statistic which is constructed by randomly choosing a single offspring from each nuclear family.  相似文献   

10.
Studies using haplotypes of multiple tightly linked markers are more informative than those using a single marker. However, studies based on multimarker haplotypes have some difficulties. First, if we consider each haplotype as an allele and use the conventional single-marker transmission/disequilibrium test (TDT), then the rapid increase in the degrees of freedom with an increasing number of markers means that the statistical power of the conventional tests will be low. Second, the parental haplotypes cannot always be unambiguously reconstructed. In the present article, we propose a haplotype-sharing TDT (HS-TDT) for linkage or association between a disease-susceptibility locus and a chromosome region in which several tightly linked markers have been typed. This method is applicable to both quantitative traits and qualitative traits. It is applicable to any size of nuclear family, with or without ambiguous phase information, and it is applicable to any number of alleles at each of the markers. The degrees of freedom (in a broad sense) of the test increase linearly as the number of markers considered increases but do not increase as the number of alleles at the markers increases. Our simulation results show that the HS-TDT has the correct type I error rate in structured populations and that, in most cases, the power of HS-TDT is higher than the power of the existing single-marker TDTs and haplotype-based TDTs.  相似文献   

11.
The transmission/disequilibrium test (TDT) [Spielman et al.: Am J Hum Genet 1993;52:506-516] has been postulated as the future of gene mapping for complex diseases, provided one is able to genotype a dense enough map of markers across the genome. Risch and Merikangas [Science 1996;273:1516-1517] suggested a million-marker screen in affected sibpair (ASP) families, demonstrating that the TDT is a more powerful test of linkage than traditional linkage tests based on allele-sharing when there is also association between marker and disease alleles. While the future of genotyping has arrived, successes in family-based association studies have been modest. This is often attributed to excessive false positives in candidate gene studies. This problem is only exacerbated by the increasing numbers of whole genome association (WGA) screens. When applied in ASPs, the TDT statistic, which assumes transmissions to siblings are independent, is not expected to have a constant variance in the presence of variable linkage. This results in generally more extreme statistics, hence will further aggravate the problem of having a large number of positive results to sort through. So an important question is how many positive TDT results will show up on a chromosome containing a disease gene due only to linkage, and will they obfuscate the true disease gene location. To answer this question we combined theory and computer simulations. These studies show that in ASPs the normal version of the TDT statistic has a mean of 0 and a variance of 1 in unlinked regions, but has a variance larger than 1 in linked regions. In contrast, the pedigree disequilibrium test (PDT) statistic adjusts for correlation between siblings due to linkage and maintains a constant variance of 1 at unassociated markers irrespective of linkage. The TDT statistic is generally larger than the PDT statistic across linked regions. This is true for unassociated as well as associated markers. To compare the two tests we ranked both statistics at the disease locus, or an associated marker, among statistics at all other markers. The TDT did better job than PDT placing the score of the associated marker near the top. Though, strictly speaking, the TDT in ASPs should be interpreted as a test of linkage and not a test of association, there is a good chance that if a marker stands out, the marker is associated as well as linked. In conclusion, our results suggest that TDT is an effective screening tool for WGA studies, especially in multiplex families.  相似文献   

12.
Klei L  Roeder K 《Human genetics》2007,121(5):549-557
Samples consisting of a mix of unrelated cases and controls, small pedigrees, and much larger pedigrees present a unique challenge for association studies. Few methods are available for efficient analysis of such a broad spectrum of data structures. In this paper we introduce a new matching statistic that is well suited to complex data structures and compare it with frequency-based methods available in the literature. To investigate and compare the power of these methods we simulate datasets based on complex pedigrees. We examine the influence of various levels of linkage disequilibrium (LD) of the disease allele with a marker allele (or equivalently a haplotype). For low frequency marker alleles/haplotypes, frequency-based statistics are more powerful in detecting association. In contrast, for high frequency marker alleles, the matching statistic has greater power. The highest power for frequency-based statistics occurs when the disease allele frequency closely matches the frequency of the linked marker allele. In contrast maximum power of the matching statistic always occurs for intermediate marker allele frequency regardless of the disease allele frequency. Moreover, the matching and frequency-based statistics exhibit little correlation. We conclude that these two approaches can be viewed as complementary in finding possible association between a disease and a marker for many different situations.  相似文献   

13.
Rohde K  Fürst R 《Human heredity》2003,56(1-3):41-47
In order to find association of genetic traits to some haplotypes from closely spaced multilocus phase-unknown genotypes we use a three-stage approach. Haplotype frequencies and the most likely haplotype pair for each individual are estimated from random samples of individual or small (nuclear) family genotypes via an EM algorithm. If the most likely haplotype pair configuration of the whole sample outweighs the less likely ones, we may consider the estimated haplotypes as alleles of a multi-allelic marker and carry out the conventional statistics, TDT or ANOVA for quantitative traits. If the most likely haplotype pair configuration and the less likely ones do not differ much in their weight, we sample the TDT or ANOVA statistic over all haplotype pair configurations using the Metropolis-Hastings algorithm. Applications of our method to simulated data as well as real data are given.  相似文献   

14.
Transmission/Disequilibrium Tests for Extended Marker Haplotypes   总被引:11,自引:0,他引:11       下载免费PDF全文
A generalization of the transmission/disequilibrium test to detect association between polymorphic markers and discrete or quantitative traits is discussed, with particular emphasis on marker haplotypes formed by several adjacent loci. Furthermore, strategies for testing haplotype association, using methods from spatial statistics, are developed. This approach compares the "similarity" of transmitted and untransmitted haplotypes, with the aim of determining the regions where there is greater similarity within the transmitted set. This arises from the fact that, although the original haplotypes carrying the mutation will be broken down by recombination, there may be a subset of markers near the mutation that are common to many of the recombinant haplotypes. Thus, by examination of each marker in turn and by measurement of the average size of the region shared identically by state in the transmitted and untransmitted haplotypes, it may be possible to detect regions of linkage disequilibrium that encompass the susceptibility gene.  相似文献   

15.
Transmission-disequilibrium tests for quantitative traits.   总被引:9,自引:3,他引:6       下载免费PDF全文
The transmission-disequilibrium test (TDT) of Spielman et al. is a family-based linkage-disequilibrium test that offers a powerful way to test for linkage between alleles and phenotypes that is either causal (i.e., the marker locus is the disease/trait allele) or due to linkage disequilibrium. The TDT is equivalent to a randomized experiment and, therefore, is resistant to confounding. When the marker is extremely close to the disease locus or is the disease locus itself, tests such as the TDT can be far more powerful than conventional linkage tests. To date, the TDT and most other family-based association tests have been applied only to dichotomous traits. This paper develops five TDT-type tests for use with quantitative traits. These tests accommodate either unselected sampling or sampling based on selection of phenotypically extreme offspring. Power calculations are provided and show that, when a candidate gene is available (1) these TDT-type tests are at least an order of magnitude more efficient than two common sib-pair tests of linkage; (2) extreme sampling results in substantial increases in power; and (3) if the most extreme 20% of the phenotypic distribution is selectively sampled, across a wide variety of plausible genetic models, quantitative-trait loci explaining as little as 5% of the phenotypic variation can be detected at the .0001 alpha level with <300 observations.  相似文献   

16.
The genetic basis of the transmission disequilibrium test (TDT) for two-marker loci is explored from first principles. In this case, parents doubly heterozygous for a given haplotype at the pair of marker loci that are each in linkage disequilibrium with the disease gene with the further possibility of a second-order linkage disequilibrium are considered. The number of times such parents transmit the given haplotype to their affected offspring is counted and compared with the frequencies of haplotypes that are not transmitted. This is done separately for the coupling and repulsion phases of doubly heterozygous genotypes. Expectations of the counts for each of the sixteen cells possible with four-marker gametic types (transmitted vs not transmitted) are derived. Based on a test of symmetry in a square 4 × 4 contingency table, chi-square tests are proposed for the null hypothesis of no linkage between the markers and the disease gene. The power of the tests is discussed in terms of the corresponding non-centrality parameters for the alternative hypothesis that both the markers are linked with the disease locus. The results indicate that the power increases with the decrease in recombination probability and that it is higher for a lower frequency of the disease gene. Taking a pair of markers in an interval for exploring the linkage with the disease gene seems to be more informative than the single-marker case since the values of the non-centrality parameters tend to be consistently higher than their counterparts in the single-marker case. Limitations of the proposed test are also discussed.  相似文献   

17.
Case-control studies compare marker-allele distributions in affected and unaffected individuals, and significant results suggest linkage but may simply reflect population structure. For markers with m alleles (m > or = 2), a McNemar-like statistic, I, estimates the level of population association between marker and disease loci. To test for linkage after significant case-control tests, within-family tests are performed. These operate on the contingency table, with i, jth element equal to the number of parents that transmit marker allele Mi and do not transmit marker allele Mi to an affected offspring. The dimension of the table is the number of alleles at the marker locus. Three test statistics have recently been proposed in the literature: Tc compares symmetric pairs of cells (i, j) and (j, i), Tm compares row and column totals for the same marker allele, and a likelihood ratio statistic Tl uses all the cells in the table. In addition, we consider a new statistic, Tmhet, that uses only the heterozygous parents and is approximately chi2 with (m - 1) df. We use a Monte Carlo test to guarantee valid tests and to demonstrate the inferiority of Tc and the equality of Tm and Tl in terms of power. The power of the Tmhet test is close but not always equal to the power of the Tm test. We also show that under the alternative hypothesis of linkage, Tm is approximately noncentral chi2 with (m - 1) df and noncentrality parameter 2NT(1 - 2theta)2I*, when data on single affecteds in NT families are used. If the disease has a low population frequency, then I* is estimated using the case-control statistic I. This offers a basis for choosing sample size, or choosing a marker system.  相似文献   

18.
Pedigree and marker data from a multiple-generation pig selection experiment have been analysed to screen for loci affecting quantitative traits (QTL). Pigs from a base population were selected either for low backfat thickness at fixed live weight (L-line) or high live weight at fixed age (F-line). Selection was based on single-trait own performance and DNA was available on selected individuals only. Genotypes for three marker loci with known positions on chromosome 4 were available. The transmission/disequilibrium test (TDT) was originally described in human genetics to test for linkage between a genetic marker and a disease-susceptibility locus, in the presence of association. Here, we adapt the TDT to test for linkage between a marker and QTL favoured by selection, and for linkage disequilibrium between them in the base population. The a priori unknown distribution of the test statistic under the null hypothesis, no linkage, was obtained via Monte Carlo simulation. Significant TDT statistics were found for markers AFABP and SW818 in the F-line, indicating the presence of a closely linked QTL affecting growth performance. In the L-line, none of the markers studied showed significance. This study emphasizes the potential of the TDT as a quick and simple approach to screen for QTL in situations where marker genotypes are available on selected individuals. The results suggest that previously identified QTL in crosses of genetically diverse breeds may also segregate in commercial selection lines.  相似文献   

19.
基于熵理论,Zhao等提出了一个对复杂疾病易感基因进行关联研究的统计量.本文拓展了这一理论到数量性状,利用熵理论。获得了一个对数量性状位点进行关联研究的采用群体极端样本及稠密标记的统计量.  相似文献   

20.
Case-control studies are used to map loci associated with a genetic disease. The usual case-control study tests for significant differences in frequencies of alleles at marker loci. In this paper, we consider the problem of comparing two or more marker loci simultaneously and testing for significant differences in haplotype rather than allele frequencies. We consider two situations. In the first, genotypes at marker loci are resolved into haplotypes by making use of biochemical methods or by genotyping family members. In the second, genotypes at marker loci are not resolved into haplotypes, but, by assuming random mating, haplotypes can be inferred using a likelihood method such as the expectation-maximization (EM) algorithm. We assume that a causative locus has two alleles with a multiplicative effect on the penetrance of a disease, with one allele increasing the penetrance by a factor pi. We find, for small values of pi-1 and large sample sizes, asymptotic results that predict the statistical power of a test for significant differences in haplotype frequencies between cases and a random sample of the population, both when haplotypes can be resolved and when haplotypes have to be inferred. The increase in power when haplotypes can be resolved can be expressed as a ratio R, which is the increase in sample size needed to achieve the same power when haplotypes are resolved over when they are not resolved. In general, R depends on the pattern of linkage disequilibrium between the causative allele and the marker haplotypes but is independent of the frequency of the causative allele and, to a first approximation, is independent of pi. For the special situation of two di-allelic marker loci, we obtain a simple expression for R and its upper bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号