首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-methylated cysteines in human lens gamma S-crystallins   总被引:1,自引:0,他引:1  
Lapko VN  Smith DL  Smith JB 《Biochemistry》2002,41(50):14645-14651
The proteins of the eye lens, which do not turn over throughout life, undergo many modifications, some of which lead to senile cataract. We describe a modification, S-methylation of cysteine, that may serve to protect the lens from detrimental modifications. The modification was detected as a +14 Da peak in electrospray ionization mass spectra of human lens gammaS-crystallins. Derivatization of gammaS-crystallin with iodoacetamide showed reaction at only six of the seven cysteines, indicating the modification blocked reaction at one cysteine. Further analysis of the modified gammaS-crystallin as tryptic peptides located the modification primarily at Cys 26, with smaller amounts at Cys 24. Tandem mass spectrometry and exact mass measurements showed that the modification was S-methylation. Methylation of proteins has been documented at several other amino acid residues, but S-methylation of cysteine residues has previously been detected only as part of a methyltransferase DNA repair mechanism or at trace amounts in hemoglobin. The high levels of S-methylated cysteines in lens nuclei and the specificity for Cys 26 and Cys 24 suggest the reaction is enzymatically mediated. This modification is particularly important because it blocks disulfide bonding of gammaS-crystallins and, thereby, inhibits formation of the high-molecular weight assemblies associated with cataract. Evidence of more S-methylation in soluble than in insoluble gammaS-crystallins supports the contention that S-methylation of gammaS-crystallin inhibits protein insolubilization and may offer protection against cataract.  相似文献   

2.
Methylation and carbamylation of human gamma-crystallins   总被引:4,自引:0,他引:4  
Accessible sulfhydryls of cysteine residues are likely sites of reaction in long-lived proteins such as human lens crystallins. Disulfide bonding between cysteines is a major contributor to intermolecular cross-linking and aggregation of crystallins. A recently reported modification of gammaS-crystallins, S-methylation of cysteine residues, can prevent disulfide formation. The aim of this study was to determine whether cysteines in gammaC-, gammaD-, and gammaB-crystallins are also S-methylated. Our data show that all the gamma-crystallins are S-methylated, but only at specific cysteines. In gammaD-crystallin, methylation is exclusively at Cys 110, whereas in gammaC- and gammaB-crystallins, the principal methylation site is Cys 22 with minor methylation at Cys 79. gammaD-crystallin is the most heavily methylated gamma-crystallin. gammaD-Crystallins from adult lenses are 37%-70% methylated, whereas gammaC and gammaB are approximately 12% methylated. The specificity of gamma-crystallin methylation and its occurrence in young clear lenses supports the idea that inhibition of disulfide bonding by S-methylation may play a protective role against cataract. Another modification, not reported previously, is carbamylation of the N termini of gammaB-, gammaC-, gammaD-crystallins. N-terminal carbamylation is likely a developmentally related modification that does not negatively impact crystallin function.  相似文献   

3.
Protein inclusions are associated with a diverse group of human diseases ranging from localized neurological disorders through to systemic non-neuropathic diseases. Here, we present evidence that the formation of intranuclear inclusions is a key event in cataract formation involving altered gamma-crystallins that are un likely to adopt their native fold. In three different inherited murine cataracts involving this type of gamma-crystallin mutation, large inclusions containing the altered gamma-crystallins were found in the nuclei of the primary lens fibre cells. Their formation preceded not only the first gross morphological changes in the lens, but also the first signs of cataract. The inclusions contained filamentous material that could be stained with the amyloid-detecting dye, Congo red. In vitro, recombinant mutant gammaB-crystallin readily formed amyloid fibrils under physiological buffer conditions, unlike wild-type protein. These data suggest that this type of cataract is caused by a mechanism involving the nuclear targeting and deposition of amyloid-like inclusions. The mutant gamma-crystallins initially disrupt nuclear function, but then this progresses to a full cataract phenotype.  相似文献   

4.
Disulfide bonding of lens crystallins contributes to the aggregation and insolubilization of these proteins that leads to cataract. A high concentration of reduced glutathione is believed to be key in preventing oxidation of crystallin sulfhydryls to form disulfide bonds. This protective role is decreased in aged lenses because of lower glutathione levels, especially in the nucleus. We recently found that human gamma-crystallins undergo S-methylation at exposed cysteine residues, a reaction that may prevent disulfide bonding. We report here that betaA1/A3-crystallins are also methylated at specific cysteine residues and are the most heavily methylated of the human lens crystallins. Among the methylated sites, Cys 64, Cys 99, and Cys 167 of betaA1-crystallin, methylation at Cys 99 is highest. Cys 64 and Cys 99 are also glutathiolated, even in a newborn lens. These post-translational modifications of the exposed cysteines may be important for maintaining the crystallin structure required for lens transparency. Previously unreported N-terminal truncations were also found.  相似文献   

5.
Human cofilin possesses the tendency for self-association, as indicated by the rapid formation of dimers and oligomers when reacted with water-soluble carbodiimide, Ellman's reagent, or glutathione disulfide. Intermolecular disulfide bonds involve Cys(39) and probably Cys(147) of two adjacent cofilin units. The disulfide-linked dimers and oligomers exhibit a biological activity distinct from the monomer. While monomeric cofilin decreased viscosity and light-scattering of F-actin solutions, dimers and oligomers caused an increase in viscosity and light scattering. Electron microscopy revealed that cofilin oligomers induce the formation of highly ordered actin bundles with occasionally blunt ends similar to actin-cofilin rods observed in cells under oxidative stress. Bundling activity of the disulfide-linked oligomers could be completely reversed into severing activity by dithiothreitol. Formation of cofilin oligomers occurred also in the presence of actin at pH 8, but not at pH 6.6, and was significantly enhanced in the presence of phosphatidylinositol 4,5-bisphosphate. Our data are consistent with the idea that cofilin exists in two forms in vivo also: as monomers exhibiting the known severing activity and as oligomers exhibiting actin bundling activity. However, stabilization of cofilin oligomers in cytoplasm is probably achieved not by disulfide bonds but by a local increase in cofilin concentration and/or binding of regulatory proteins.  相似文献   

6.
The early stages of heat induced aggregation at 67.5 degrees C of beta-lactoglobulin were studied by combined static light scattering and size exclusion chromatography. At all conditions studied (pH 8.7 without salt and pH 6.7 with or without 60 mM NaCl) we observe metastable heat-modified dimers, trimers, and tetramers. These oligomers reach a maximum in concentration at about the time when large aggregates (1000-4000 kg/mol) appear, after which they decline in concentration. By isolating the oligomers it was demonstrated that they rapidly form aggregates upon heating in the absence of monomeric protein, showing that these species are central to the aggregation process. To our knowledge this is the first time that intermediates in protein aggregation have been isolated. At all stages of aggregation the dominant oligomer was the heat-modified dimer. Whereas the heat-modified oligomers are formed at a higher rate at pH 8.7 than at pH 6.7, the opposite is the case for the formation of aggregates from the metastable oligomers indicating cross-linking via disulfide bridges for the oligomers and noncovalent interaction in the formation of the aggregates. The data suggest that an aggregate nucleus is formed from four oligomers. For protein concentrations of 10 or 20 g/l a heat-modified monomer can be observed until about the time when the maximum in concentration appears of the heat-modified dimer. The disappearance of this heat-modified monomer correlates to the formation of dimers (trimers and tetramers).  相似文献   

7.
The montmorillonite-catalyzed reactions of D, L-ImpA with D, L-ImpU generates RNA-like oligomers. The structures of the dimers to pentamers were investigated and homochiral products were identified in greater amounts than would be expected if theoretical amounts of each were formed. The homochirality increased from 64% to 97% as the chain length increased from dimers to pentamers. Investigation of the effect of pH, occupancy of the interlayer space and the influence of various cations in the reaction provided further insight into physical process in the mechanism of the catalysis. A detailed analysis of dimers was carried out in view of there being key intermediates towards formation of higher oligomers. The study was extended to the synthesis of non-standard dimers including those formed with deoxy-ribonucleotides.  相似文献   

8.
The alpha-, beta-, and gamma-crystallins are the major structural proteins of mammalian lenses. The human lens also contains tryptophan-derived UV filters, which are known to spontaneously deaminate at physiological pH and covalently attach to lens proteins. 3-Hydroxykynurenine (3OHKyn) is the third most abundant of the kynurenine UV filters in the lens, and previous studies have shown this compound to be unstable and to be oxidized under physiological conditions, producing H2O2. In this study, we show that methionine and tryptophan amino acid residues are oxidized when bovine alpha-crystallin is incubated with 3-hydroxykynurenine. We observed almost complete oxidation of methionines 1 and 138 in alphaA-crystallin and a similar extent of oxidation of methionines 1 and 68 in alphaB-crystallin after 48 h. Tryptophans 9 and 60 in alphaB-crystallin were oxidized to a lesser extent. AlphaA-crystallin was also found to have 3OHKyn bound to its single cysteine residue. Examination of normal aged human lenses revealed no evidence of oxidation of alpha-crystallin; however, oxidation was detected at methionine 1 in both alphaA- and alphaB-crystallin from human cataractous lenses. Age-related nuclear cataract is associated with coloration and insolubilization of lens proteins and extensive oxidation of cysteine and methionine residues. Our findings demonstrate that 3-hydroxykynurenine can readily catalyze the oxidation of methionine residues in both alphaB- and alphaA-crystallin, and it has been reported that alpha-crystallin modified in this way is a poorer chaperone. Thus, 3-hydroxykynurenine promotes the oxidation and modification of crystallins and may contribute to oxidative stress in the human lens.  相似文献   

9.
Reaction of tyrosine oxidation products with proteins of the lens   总被引:2,自引:1,他引:1       下载免费PDF全文
Oxidation of tyrosine in the presence of bovine lens proteins leads to the formation of brown or black melanoproteins. Both tyrosinase and the oxidizing system of ferrous sulphate-ascorbic acid-EDTA are effective. The fluorescence of the lens proteins is both altered and enhanced by the tyrosine-oxidizing systems. Their fluorescence spectra resemble those of urea-insoluble proteins of human cataractous lens and of 1,2-naphthaquinone-proteins of naphthalene cataract. The lens proteins lose their thiol groups and, in acid hydrolysates of treated beta-and gamma-crystallins, a substance has been detected chromatographically that behaves similarly to a compound formed when 3,4-dihydroxyphenylalanine (dopa) is oxidized by tyrosinase in the presence of cysteine. Analysis and behaviour of this substance from hydrolysates of lens proteins suggest that it is a compound of cysteine and dopa.  相似文献   

10.
Glutathione (GSH) is the major intracellular thiol present in 1-10-mm concentrations in human cells. However, the redox potential of the 2GSH/GSSG (glutathione disulfide) couple in cells varies in association with proliferation, differentiation, or apoptosis from -260 mV to -200 or -170 mV. Hydrogen peroxide is transiently produced as second messenger in receptor-mediated growth factor signaling. To understand oxidation mechanisms by GSSG or nitric oxide-related nitrosylation we studied effects on glutaredoxins (Grx), which catalyze GSH-dependent thiol-disulfide redox reactions, particularly reversible glutathionylation of protein sulfhydryl groups. Human Grx1 and Grx2 contain Cys-Pro-Tyr-Cys and Cys-Ser-Tyr-Cys active sites and have three and two additional structural Cys residues, respectively. We analyzed the redox state and disulfide pairing of Cys residues upon GSSG oxidation and S-nitrosylation. Cytosolic/nuclear Grx1 was partly inactivated by both S-nitrosylation and oxidation. Inhibition by nitrosylation was reversible under anaerobic conditions; aerobically it was stronger and irreversible, indicating inactivation by nitration. Oxidation of Grx1 induced a complex pattern of disulfide-bonded dimers and oligomers formed between Cys-8 and either Cys-79 or Cys-83. In addition, an intramolecular disulfide between Cys-79 and Cys-83 was identified, predicted to have a profound effect on the three-dimensional structure. In contrast, mitochondrial Grx2 retains activity upon oxidation, did not form disulfide-bonded dimers or oligomers, and could not be S-nitrosylated. The dimeric iron sulfur cluster-coordinating inactive form of Grx2 dissociated upon nitrosylation, leading to activation of the protein. The striking differences between Grx1 and Grx2 reflect their diverse regulatory functions in vivo and also adaptation to different subcellular localization.  相似文献   

11.
We provide evidence that in vitro protein cross-linking can be accomplished in three concerted steps: (i) a change in protein conformation; (ii) formation of interchain disulfide bonds; and (iii) formation of interchain isopeptide cross-links. Oxidative refolding and thermal unfolding of ribonuclease A, lysozyme, and protein disulfide isomerase led to the formation of cross-linked dimers/oligomers as revealed by SDS-polyacrylamide gel electrophoresis. Chemical modification of free amino groups in these proteins or unfolding at pH < 7.0 resulted in a loss of interchain isopeptide cross-linking without affecting interchain disulfide bond cross-linking. Furthermore, preformed interchain disulfide bonds were pivotal for promoting subsequent interchain isopeptide cross-links; no dimers/oligomers were detected when the refolding and unfolding solution contained the reducing agent dithiothreitol. Similarly, the Cys326Ser point mutation in protein disulfide isomerase abrogated its ability to cross-link into homodimers. Heterogeneous proteins become cross-linked following the formation of heteromolecular interchain disulfide bonds during thermal unfolding of a mixture of of ribonuclease A and lysozyme. The absence of glutathione and glutathione disulfide during the unfolding process attenuated both the interchain disulfide bond cross-links and interchain isopeptide cross-links. No dimers/oligomers were detected when the thermal unfolding temperature was lower than the midpoint of thermal denaturation temperature.  相似文献   

12.
The purpose of the present study was to measure the pattern of uptake of75Se into proteins in normal rat lenses and into the proteins of lenses with selenite-induced cataract. Ten-day-old suckling rats received a single injection of75Se with or without a cataractous dose of cold carrier sodium selenite. Four days after injection, the proteins from excised lenses were counted for75Se radioactivity and subjected to gel permeation chromatography, amino acid analyses, and mass spectrometry. All three soluble crystallin lens proteins took up75Se in both normal and cataractous lenses. However, cataractous lenses did not take up75Se into a soluble protein in which major quantities of75Se were taken up in normal rats. Futhermore,75Se in the gamma-crystallins was associated with an unusual acidic amino acid. It was concluded that selenium metabolism by lens proteins may be unusual compared to other soft tissues.  相似文献   

13.
The effect on ozone-induced oxidation on the self-assembly of fibrin in the presence of fibrin-stabilizing factor FXIIIa of soluble cross-linked fibrin oligomers was studied in a medium containing moderate urea concentrations. It is established that fibrin oligomers were formed by the protofibrils cross-linked through γ-γ dimers and the fibrils additionally cross-linked by through α-polymers. The oxidation promoted both the accumulation of greater amounts of γ-γ dimers and the formation of protofibrils, fibrils, and their dissociation products emerging with increasing urea concentrations, which have a high molecular weight. It is concluded that the oxidation enhances the axial interactions between D-regions of fibrin molecules.  相似文献   

14.
Cysteine-to-serine mutations were constructed to test the functional and structural significance of the three non-extracellular cysteine residues in ecto-nucleoside-triphosphate diphosphohydrolase 3 (eNTPDase3). None of these cysteines were found to be essential for enzyme activity. However, Cys(10), located on the short N-terminal cytoplasmic tail, was found to be responsible for dimer formation occurring via oxidation during membrane preparation as well as for dimer cross-linking resulting from exogenously added sulfhydryl-specific cross-linking agents. The resistance to further cross-linking of these dimers into higher order oligomers by lysine-specific cross-linkers suggests that this enzyme may form its native tetrameric structure as a "dimer of dimers" with nonequivalent interactions between subunits. Cys(501), located in the hydrophobic C-terminal membrane-spanning domain of eNTPDase3, was found to be the site of chemical modification by a sulfhydryl-specific reagent, p-chloromercuriphenylsulfonic acid (pCMPS), leading to inhibition of enzyme activity. The effect of pCMPS was negligible after dissociation of the enzyme into monomers by Triton X-100, suggesting that the mechanism of inhibition is dependent on the oligomeric structure. Because Cys(501) is accessible for modification by the membrane-impermeant reagent pCMPS, we hypothesize that eNTPDase3 (and possibly other eNTPDases) contains a water-filled crevice allowing access of water and hydrophilic compounds to at least part of the protein's C-terminal membrane-spanning helix.  相似文献   

15.
Individual lens proteins were studied during development of Rana temporaria. Antisera to alpha-, beta-crystallins of chicks and gamma-crystallins of Rana ridibunda were used as immunochemical markers. Besides the main crystallins, a new antigen was found in the R. temporaria lens tentatively called alphabeta-crystallin. It appears to be characteristic only for the amphibian lens. Using the indirect method of fluorescent antibodies, it was shown that all the antigens under study appeared in the lens of the R. temporaria tadpoles within 1--2 days (at 20 degrees). The crystallins are found initially only in the developing lens fibers and later in the lens epithelium. It was established that the lens epithelium contained gamma-crystallins which appeared somewhat earlier than alpha- and beta-crystallins, but simultaneously with alphabeta-crystallin.  相似文献   

16.
The AhpC/AhpD system of Mycobacterium tuberculosis provides important antioxidant protection, particularly when the KatG catalase-peroxidase activity is depressed, as it is in many isoniazid resistant strains. In the absence of lipoamide or bovine dihydrolipoamide dehydrogenase (DHLDH), components of the normal catalytic system, covalent dimers, tetramers, and hexamers are formed when a mixture of AhpC and AhpD is exposed to peroxide. Each of the oligomers contains equimolar amounts of AhpC and AhpD. This oligomerization is reversible because the oligomers can be fully reduced to the monomeric species by dithiothreitol. Using mutagenesis, we confirm here that Cys61 and Cys174 of AhpC as well as Cys133 and Cys130 of AhpD are critical for activity in the fully reconstituted system consisting of AhpC, AhpD, lipoamide, DHLDH, and NADH. A key step in the reduction of oxidized AhpC by reduced AhpD is formation of a disulfide cross-link between Cys61 of AhpC and Cys133 of AhpD. This cross-link can be reduced by intramolecular reaction with either Cys174 of AhpC or Cys130 of AhpD. Cys176 can also, to some extent, substitute for Cys174, providing a measure of redundancy that helps to maintain the efficiency of this antioxidant protective system.  相似文献   

17.
beta-Crystallins are oligomeric eye lens proteins that are related to monomeric gamma-crystallins by domain swapping: like gamma-crystallins, they are comprised of two similar domains but they differ in having long sequence extensions. beta B2, a major component of beta-crystallin oligomers, self-associates to a homodimer in solution. In two crystal structures of native beta B2, the protein is a 222-symmetric tetramer of eight domains. It has previously been shown that a mutant of rat beta B2-crystallin, in which the bulk of the N- and C-terminal sequence extensions has been deleted, assembles into dimers and tetramers. Here we present the 3.0 A resolution X-ray structure of the tetramer, beta B2 delta NC1. The mutant tetramer has a very similar set of domain interactions to the native structure. However, the structures differ in the relative orientation of the two sets of four domains. The paired N- and C-terminal domain interface, which is at the heart of the dimer structure, is very similar to the native structure. However, the truncation of the C-terminal extension removes an important tryptophan residue, which prevents the extension from acting as a (non-covalent) linker, as it does in native beta B2. There is a knock-on structural effect that removes a contact between extension and covalent linker, and this appears to cause a small twist in the linker that is amplified into a 20 degrees rotation between sets of paired domains.  相似文献   

18.
Peripherin-2 and Rom-1 are homologous tetraspanning membrane proteins that assemble into noncovalent tetramers and higher order disulfide-linked oligomers implicated in photoreceptor disc morphogenesis. Individuals who coinherit a L185P peripherin-2 mutation and a null or G113E rom-1 mutation are afflicted with retinitis pigmentosa, whereas individuals who inherit only one defective gene are normal. We examined the expression, subunit assembly, and disulfide-mediated oligomerization of L185P and L185A peripherin-2 and L188P Rom-1 by velocity sedimentation, co-immunoprecipitation, and cross-linking. These mutants formed noncovalent dimers under disulfide-reducing conditions but failed to assemble into core tetramers. Under nonreducing conditions, L185P dimers formed disulfide-linked tetramers but not higher order oligomers. L185P coassembled with wild-type peripherin-2 and Rom-1 to form tetramers and higher order disulfide-linked oligomers characteristic of the wild-type proteins. The G113E Rom-1 mutant expressed 20-fold lower than wild-type Rom-1, indicating that it behaves mechanistically as a null allele. We conclude that Leu(185) of peripherin-2 (Leu(188) of Rom-1) is critical for tetramer but not dimer formation and that the core tetramer has 2-fold symmetry. Peripherin-2-containing tetramers are required for higher order disulfide-linked oligomer formation. The level of these oligomers is critical for stable photoreceptor disc formation and the digenic retinitis pigmentosa disease phenotype.  相似文献   

19.
Thioredoxin peroxidase 1 (TPx1) of the malarial parasite Plasmodium falciparum is a 2-Cys peroxiredoxin involved in the detoxification of reactive oxygen species and - as shown here - of reactive nitrogen species. As novel electron acceptor of reduced TPx1, we characterised peroxynitrite; the rate constant for ONOO- reduction by the enzyme (1 x 10(6) M(-1) s(-1) at pH 7.4 and 37 degrees C) was determined by stopped-flow measurements. As reducing substrate of TPx1, we identified - aside from thioredoxin - plasmoredoxin; this 22-kDa protein occurs only in malarial parasites. When studying the potential roles of Cys74 and Cys170 of Tpx1 in catalysis, as well as in oligomerisation behaviour, we found that replacement of Cys74 by Ala influenced neither the dimerisation nor enzymatic activity of TPx1. In the C170A mutant, however, the kcat/Km for reduced Trx as a substrate was shown to be approximately 50-fold lower and, in contrast to the wild-type enzyme, covalently linked dimers were not formed. For the catalytic cycle of TPx1, we conclude that oxidation of the peroxidatic Cys50 by the oxidising substrate is followed by the formation of an intermolecular disulfide bond between Cys50 and Cys170' of the second subunit, which is then attacked by an external electron donor such as thioredoxin or plasmoredoxin.  相似文献   

20.
Human lens proteins become progressively modified by tryptophan-derived UV filter compounds in an age-dependent manner. One of these compounds, kynurenine, undergoes deamination at physiological pH, and the product binds covalently to nucleophilic residues in proteins via a Michael addition. Here we demonstrate that after covalent attachment of kynurenine, lens proteins become susceptible to photo-oxidation by wavelengths of light that penetrate the cornea. H2O2 and protein-bound peroxides were found to accumulate in a time-dependent manner after exposure to UV light (lambda > 305-385 nm), with shorter-wavelength light giving more peroxides. Peroxide formation was accompanied by increases in the levels of the protein-bound tyrosine oxidation products dityrosine and 3,4-dihydroxyphenylalanine, species known to be elevated in human cataract lens proteins. Experiments using D2O, which enhances the lifetime of singlet oxygen, and azide, a potent scavenger of this species, are consistent with oxidation being mediated by singlet oxygen. These findings provide a mechanistic explanation for UV light-mediated protein oxidation in cataract lenses, and also rationalize the occurrence of age-related cataract in the nuclear region of the lens, as modification of lens proteins by UV filters occurs primarily in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号