首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46-48 (GAL) and 65-69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2-120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency.  相似文献   

2.
Arrestins are regulatory proteins that bind specifically to ligand-activated phosphorylated G protein-coupled receptors to terminate G protein-mediated signaling, cause the internalization of the receptor-arrestin complex, and initiate additional intracellular signaling cascades. Multiple lines of evidence suggest that arrestin normally exists in an inactive basal state and undergoes conformational activation in the process of receptor binding. "Pre-activated" phosphorylation-independent arrestin mutants display increased binding to ligand-activated but unphosphorylated receptors. The mutations are believed to expose key receptor-binding regions, allowing the mutants to mimic, to some extent, the transition of arrestin to its active state. In the present study, amide hydrogen exchange (HX) and mass spectrometry (MS) were used to examine the inactive conformation of wild-type arrestin2 and compare its solution conformation with two pre-activated mutants (R169E and 3A (I385A, V386A, F387A)). The results suggest an unexpected level of structural organization within arrestin elements containing clathrin and adaptin2-binding sites that were previously believed to be completely disordered. Increased deuterium incorporation was observed in both mutant forms compared with wild-type, indicating a change in the conformation of the mutants. Three regions demonstrated significant differences in deuterium incorporation: the first 33 residues of the N terminus and residues 243-255 (both previously implicated in receptor interaction), and residues 271-299. The results suggest that subtle differences in conformation are responsible for the significant difference in biological activity displayed by pre-activated arrestin mutants and that similar changes occur in the process of arrestin binding to the receptor.  相似文献   

3.
YopH is a 468-amino acid protein-tyrosine phosphatase that is produced by pathogenic Yersinia species. YopH is translocated into host mammalian cells via a type III protein secretion system. Translocation of YopH into human epithelial cells results in dephosphorylation of p130(Cas) and paxillin, disruption of focal adhesions, and inhibition of integrin-mediated bacterial phagocytosis. Previous studies have shown that the N-terminal 129 amino acids of YopH comprise a bifunctional domain. This domain binds to the SycH chaperone in Yersinia to orchestrate translocation and to tyrosine-phosphorylated target proteins in host cells to mediate substrate recognition. We used random mutagenesis in combination with the yeast two-hybrid system to identify residues in the YopH N-terminal domain that are involved in substrate-binding activity. Four single codon changes (Q11R, V31G, A33D, and N34D) were identified that interfered with binding of the YopH N-terminal domain to tyrosine-phosphorylated p130(Cas) but not to SycH. These mutations did not impair YopH translocation into HeLa cells infected with Yersinia pseudotuberculosis. Introduction of the V31G substitution into catalytically inactive (substrate-trapping) forms of YopH interfered with the ability of these proteins to bind to p130(Cas) and to localize to focal adhesions in HeLa cells. In addition, the V31G substitution reduced the ability of catalytically active YopH to dephosphorylate target proteins in HeLa cells. These data indicate that the substrate- and SycH-binding activities of the YopH N-terminal domain can be separated and that the former activity is important for recognition and dephosphorylation of substrates by YopH in vivo.  相似文献   

4.
Site-directed mutagenesis was carried out on Bacillus pumilus chloramphenicol acetyltransferase (CAT-86) to determine the effects of substitution at a conserved hydrophobic pocket identified earlier as important for thermostability. Mutations were introduced that would substitute residues at consensus positions 33, 191 and 203 in the enzyme, both individually and in combination. Two mutants, SDM1 (CAT-86 Y33F, A203V) and SDM5 (CAT-86 A203I), were more thermostable than wild-type and two mutants, SDM4 (CAT-86 I191V) and SDM7 (CAT-86 A203G), were less stable. Reconstruction of the residues of this hydrophobic pocket to that of a more thermostable CAT-R387 enzyme pocket (as a Y33F, I191V, A203V triple mutant) increased the thermostability of the enzyme above the wild-type, but its stability was less than that of SDM1 and SDM5. The K(m) values of the mutant enzymes for chloramphenicol and acetyl-CoA were essentially unaltered (in the ranges 15-30 and 26-35 microM respectively) and the specific activity of purified enzyme was in the range 270-710 units/mg protein. The possible effects of the amino acid substitutions on the CAT-86 structure were determined by homology modelling. A reduction in conformational strain and optimized hydrophobic interactions are predicted to be responsible for the increased thermostability of the SDM1 and SDM5 mutants.  相似文献   

5.
Fujimoto N  Tanaka K  Suzuki T 《FEBS letters》2005,579(7):1688-1692
The purpose of this study is to clarify the amino acid residues responsible for the synergism in substrate binding of arginine kinase (AK), a key enzyme in invertebrate energy metabolism. AKs contain a pair of highly conserved amino acids (D62 and R193) that form an ion pair, and replacement of these residues can cause a pronounced loss of activity. Interestingly, in the oyster Crassostrea AK, these residues are replaced by an N and a K, respectively. Despite this replacement, the enzyme retains high activity and moderate synergism in substrate binding (Kd/Km=2.3). We replaced the N62 by G or D and the K193 by G or R in Crassostrea AK, and also constructed the double mutants of N62G/K193G and N62D/K193R. All of the mutants retained 50-90% of the wild-type activity. In N62G and N62D mutants, the Kmarg for arginine binding was comparable to that of wild-type enzyme, but the Kdarg was increased 2-5-fold, resulting in a strong synergism (Kd/Km=4.9-11.3). On the other hand, in K193G and K193R mutants, the Kmarg was increased 4-fold, and synergism was lost almost completely (Kd/Km=1.0-1.4). The N62G/K193G double mutant showed similar characteristics to the K193G and K193R mutants. Another double mutant, N62D/K193R, similar to the amino acid pair in the wild-type enzyme, had characteristics similar to those of the wild-type enzyme. These results indicate that the amino acid residues 62 and 193 play the key role in mediating the synergism in substrate binding of oyster arginine kinase.  相似文献   

6.
alpha-D-Glucose activates glucokinase (EC 2.7.1.1) on its binding to the active site by inducing a global hysteretic conformational change. Using intrinsic tryptophan fluorescence as a probe on the alpha-D-glucose induced conformational changes in the pancreatic isoform 1 of human glucokinase, key residues involved in the process were identified by site-directed mutagenesis. Single-site W-->F mutations enabled the assignment of the fluorescence enhancement (DeltaF/F(0)) mainly to W99 and W167 in flexible loop structures, but the biphasic time course of DeltaF/F(0) is variably influenced by all tryptophan residues. The human glucokinase-alpha-D-glucose association (K(d) = 4.8 +/- 0.1 mm at 25 degrees C) is driven by a favourable entropy change (DeltaS = 150 +/- 10 J.mol(-1).K(-1)). Although X-ray crystallographic studies have revealed the alpha-d-glucose binding residues in the closed state, the contact residues that make essential contributions to its binding to the super-open conformation remain unidentified. In the present study, we combined functional mutagenesis with structural dynamic analyses to identify residue contacts involved in the initial binding of alpha-d-glucose and conformational transitions. The mutations N204A, D205A or E256A/K in the L-domain resulted in enzyme forms that did not bind alpha-D-glucose at 200 mm and were essentially catalytically inactive. Our data support a molecular dynamic model in which a concerted binding of alpha-D-glucose to N204, N231 and E256 in the super-open conformation induces local torsional stresses at N204/D205 propagating towards a closed conformation, involving structural changes in the highly flexible interdomain connecting region II (R192-N204), helix 5 (V181-R191), helix 6 (D205-Y215) and the C-terminal helix 17 (R447-K460).  相似文献   

7.
The role of 15 residues in the reaction catalyzed by Arabidopsis thaliana Delta7-sterol-C5(6)-desaturase (5-DES) was investigated using site-directed mutagenesis and expression of the mutated enzymes in an erg3 yeast strain defective in 5-DES. The mutated desaturases were assayed in vivo by sterol analysis and quantification of Delta5,7-sterols. In addition, the activities of the recombinant 5-DESs were examined directly in vitro in the corresponding yeast microsomal preparations. One group of mutants was affected in the eight evolutionarily conserved histidine residues from three histidine-rich motifs. Replacement of these residues by leucine or glutamic acid completely eliminated the desaturase activity both in vivo and in vitro, in contrast to mutations at seven other conserved residues. Thus, mutants H203L, H222L, H222E, P201A, G234A, and G234D had a 5-DES activity reduced to 2-20% of the wild-type enzyme, while mutants K115L, P175V, and P175A had a 5-DES activity and catalytical efficiency (V/K) that was similar to that of the wild-type. Therefore, these residues are not essential for the catalysis but contribute to the activity through conformational or other effects. One possible function for the histidine-rich motifs would be to provide the ligands for a presumed catalytic Fe center, as previously proposed for a number of integral membrane enzymes catalyzing desaturations and hydroxylations [Shanklin et al. (1994) Biochemistry 33, 12787-12794]. Another group of mutants was affected in residue 114 based on previous in vivo observations in A. thaliana indicating that mutant T114I was deficient in 5-DES activity. We show that the enzyme T114I has an 8-fold higher Km and 10-fold reduced catalytic efficiency. Conversely, the functionally conservative substituted mutant enzyme T114S displays a 28-fold higher Vmax value and an 8-fold higher Km value than the wild-type enzyme. Consequently, V/K for T114S was 38-fold higher than that for T114I. The data suggest that Thr 114 is involved in stabilization of the enzyme-substrate complex with a marked discrimination between the ground-state and the transition state of a rate-controlling step in the catalysis by the 5-DES.  相似文献   

8.
Thermostability is an important property of industrially significant hydrolytic enzymes: understanding the structural basis for this attribute will underpin the future biotechnological exploitation of these biocatalysts. The Cellvibrio family 10 (GH10) xylanases display considerable sequence identity but exhibit significant differences in thermostability; thus, these enzymes represent excellent models to examine the structural basis for the variation in stability displayed by these glycoside hydrolases. Here, we have subjected the intracellular Cellvibrio mixtus xylanase CmXyn10B to forced protein evolution. Error-prone PCR and selection identified a double mutant, A334V/G348D, which confers an increase in thermostability. The mutant has a Tm 8 degrees C higher than the wild-type enzyme and, at 55 degrees C, the first-order rate constant for thermal inactivation of A334V/G348D is 4.1 x 10(-4) min(-1), compared to a value of 1.6 x 10(-1) min(-1) for the wild-type enzyme. The introduction of the N to C-terminal disulphide bridge into A334V/G348D, which increases the thermostability of wild-type CmXyn10B, conferred a further approximately 2 degrees C increase in the Tm of the double mutant. The crystal structure of A334V/G348D showed that the introduction of Val334 fills a cavity within the hydrophobic core of the xylanase, increasing the number of van der Waals interactions with the surrounding aromatic residues, while O(delta1) of Asp348 makes an additional hydrogen bond with the amide of Gly344 and O(delta2) interacts with the arabinofuranose side-chain of the xylose moiety at the -2 subsite. To investigate the importance of xylan decorations in productive substrate binding, the activity of wild-type CmXyn10B, the mutant A334V/G348D, and several other GH10 xylanases against xylotriose and xylotriose containing an arabinofuranose side-chain (AX3) was assessed. The enzymes were more active against AX3 than xylotriose, providing evidence that the arabinose side-chain makes a generic contribution to substrate recognition by GH10 xylanases.  相似文献   

9.
We investigated the functional roles of putative active site residues in Escherichia coli CheA by generating nine site-directed mutants, purifying the mutant proteins, and quantifying the effects of those mutations on autokinase activity and binding affinity for ATP. We designed these mutations to alter key positions in sequence motifs conserved in the protein histidine kinase family, including the N box (H376 and N380), the G1 box (D420 and G422), the F box (F455 and F459), the G2 box (G470, G472, and G474), and the "GT block" (T499), a motif identified by comparison of CheA to members of the GHL family of ATPases. Four of the mutant CheA proteins exhibited no detectable autokinase activity (Kin(-)). Of these, three (N380D, D420N, and G422A) exhibited moderate decreases in their affinities for ATP in the presence or absence of Mg(2+). The other Kin(-) mutant (G470A/G472A/G474A) exhibited wild-type affinity for ATP in the absence of Mg(2+), but reduced affinity (relative to that of wild-type CheA) in the presence of Mg(2+). The other five mutants (Kin(+)) autophosphorylated at rates slower than that exhibited by wild-type CheA. Of these, three mutants (H376Q, D420E, and F455Y/F459Y) exhibited severely reduced k(cat) values, but preserved K(M)(ATP) and K(d)(ATP) values close to those of wild-type CheA. Two mutants (T499S and T499A) exhibited only small effects on k(cat) and K(M)(ATP). Overall, these results suggest that conserved residues in the N box, G1 box, G2 box, and F box contribute to the ATP binding site and autokinase active site in CheA, while the GT block makes little, if any, contribution. We discuss the effects of specific mutations in relation to the three-dimensional structure of CheA and to binding interactions that contribute to the stability of the complex between CheA and Mg(2+)-bound ATP in both the ground state and the transition state for the CheA autophosphorylation reaction.  相似文献   

10.
Lin TY 《Biochemistry》1999,38(47):15508-15513
Escherichia coli thioredoxin is a redox-active protein. A mutant protein with an aspartic acid substitution for the largely conserved glycine at position 33 (G33D) in the active site of thioredoxin has been generated to study the effects of a negatively charged residue in the active site of the protein. Despite the close proximity of the negative-charged Asp to the redox active cysteines, the effective concentration of the cysteines does not deviate significantly from that of the wild-type protein. The redox potential (E(o)') measured by the equilibrium between NADPH and the mutant thioredoxin is also close to that of the wild-type. Kinetic measurements of the reaction between thioredoxin and thioredoxin reductase show that G33D mutant and the wild-type proteins have identical kcat values. However, the Km for G33D mutant is approximately 10-fold higher than that for the wild-type protein. In vivo assay of the growth of E. coli strain carrying wild-type or G33D mutant thioredoxin on methionine sulfoxide indicates that the G33D mutant protein is a slower electron donor for methionine sulfoxide reductase. Structural stability of the oxidized protein is not altered by the G33D substitution, as illustrated by the same unfolding free energies studied by urea. The substitution does not show significant change of the near UV and far-UV circular dichroic (CD) and the fluorescence spectra for either the reduced or the oxidized protein. Therefore, the global structure of the G33D protein is not changed. However, the surface of the active site has been altered locally by G33D substitution, which accounts for the above kinetically poor behaviors. A model of G33D structure is constructed based on these studies.  相似文献   

11.
The combined action of temperature (10-35 degrees C) and pressure (0. 001-2 kbar) on the catalytic activity of wild-type human butyrylcholinesterase (BuChE) and its D70G mutant was investigated at pH 7.0 using butyrylthiocholine as the substrate. The residue D70, located at the mouth of the active site gorge, is an essential component of the peripheral substrate binding site of BuChE. Results showed a break in Arrhenius plots of wild-type BuChE (at Tt approximately 22 degrees C) whatever the pressure (dTt/dP = 1.6 +/- 1.5 degrees C.kbar-1), whereas no break was observed in Arrhenius plots of the D70G mutant. These results suggested a temperature-induced conformational change of the wild-type BuChE which did not occur for the D70G mutant. For the wild-type BuChE, at around a pressure of 1 kbar, an intermediate state, whose affinity for substrate was increased, appeared. This intermediate state was not seen for the mutant enzyme. The wild-type BuChE remained active up to a pressure of 2 kbar whatever the temperature, whereas the D70G mutant was found to be more sensitive to pressure inactivation (at pressures higher than 1.5 kbar the mutant enzyme lost its activity at temperatures lower than 25 degrees C). The results indicate that the residue D70 controls the conformational plasticity of the active site gorge of BuChE, and is involved in regulation of the catalytic activity as a function of temperature.  相似文献   

12.
We report a comprehensive electron crystallographic analysis of conformational changes in the photocycle of wild-type bacteriorhodopsin and in a variety of mutant proteins with kinetic defects in the photocycle. Specific intermediates that accumulate in the late stages of the photocycle of wild-type bacteriorhodopsin, the single mutants D38R, D96N, D96G, T46V, L93A and F219L, and the triple mutant D96G/F171C/F219L were trapped by freezing two-dimensional crystals in liquid ethane at varying times after illumination with a light flash. Electron diffraction patterns recorded from these crystals were used to construct projection difference Fourier maps at 3.5 A resolution to define light-driven changes in protein conformation.Our experiments demonstrate that in wild-type bacteriorhodopsin, a large protein conformational change occurs within approximately 1 ms after illumination. Analysis of structural changes in wild-type and mutant bacteriorhodopsins under conditions when either the M or the N intermediate is preferentially accumulated reveals that there are only small differences in structure between M and N intermediates trapped in the same protein. However, a considerably larger variation is observed when the same optical intermediate is trapped in different mutants. In some of the mutants, a partial conformational change is present even prior to illumination, with additional changes occurring upon illumination. Selected mutations, such as those in the D96G/F171C/F219L triple mutant, can sufficiently destabilize the wild-type structure to generate almost the full extent of the conformational change in the dark, with minimal additional light-induced changes. We conclude that the differences in structural changes observed in mutants that display long-lived M, N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. Our observations thus support a simplified view of the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M1) are well approximated by one protein conformation, while the structures of the later intermediates (M2, N and O) are well approximated by the other protein conformation. We propose that in wild-type bacteriorhodopsin and in most mutants, this conformational change between the M1 and M2 states is likely to make an important contribution towards efficiently switching proton accessibility of the Schiff base from the extracellular side to the cytoplasmic side of the membrane.  相似文献   

13.
Immunoglobulin binding domain B1 of streptococcal protein G (GB1), a small (56 residues), stable, single domain protein, is one of the most extensively used model systems in the area of protein folding and design. The recently determined NMR structure of a quadruple mutant (HS#124F26A, L5V/F30V/Y33F/A34F) revealed a domain-swapped dimer that dissociated into a partially folded, monomeric species at low micromolar protein concentrations. Here, we have characterized this monomeric, partially folded species by NMR and show that extensive conformational heterogeneity for a substantial portion of the polypeptide chain exists. Exchange between the conformers within the monomer ensemble on the microsecond to millisecond timescale renders the majority of backbone amide resonances broadened beyond detection. Despite these extensive temporal and spatial fluctuations, the overall architecture of the monomeric mutant protein resembles that of wild-type GB1 and not the monomer unit of the domain-swapped dimer.  相似文献   

14.
To identify residues of the rat AT1A angiotensin II receptor involved with signal transduction and binding of the non-peptide agonist L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n-butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]imidazol[4,5,6]-pyridine) we have performed ligand binding and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain of the AT1 receptor are involved in the binding of the non-peptide ligand, or in a general receptor activation phenomenon that involves conformational modifications for a preferential binding of agonists or antagonists.  相似文献   

15.
Hyperphenylalaninemias are genetic diseases prevalently caused by mutations in the phenylalanine hydroxylase (PAH) gene. The wild-type PAH enzyme is a homotetramer regulated by its substrate, cofactor and phosphorylation. We reproduced a full-length wild-type protein and seven natural full-length PAH variants, p.I65M, p.N223Y, p.R297L, p.F382L, p.K398N, p.A403V, and p.Q419R, and analyzed their biochemical and biophysical behavior. All mutants exhibited reduced enzymatic activity, namely from 38% to 69% of wild-type activity. Biophysical characterization was performed by size-exclusion chromatography, light scattering and circular dichroism. In the purified wild-type PAH, we identified the monomer in equilibrium with the dimer and tetramer. In most mutants, the equilibrium shifted toward the dimer and most tended to form aggregates. All PAH variants displayed different biophysical behaviors due to loss of secondary structure and thermal destabilization. Specifically, p.F382L was highly unstable at physiological temperature. Moreover, using confocal microscopy with the number and brightness technique, we studied the effect of BH4 addition directly in living human cells expressing wild-type PAH or p.A403V, a mild mutant associated with BH4 responsiveness in vivo. Our results demonstrate that BH4 addition promotes re-establishment of the oligomerization equilibrium, thus indicating that the dimer-to-tetramer shift in pA403V plays a key role in BH4 responsiveness. In conclusion, we show that the oligomerization process and conformational stability are altered by mutations that could affect the physiological behavior of the enzyme. This endorses the hypothesis that oligomerization and folding defects of PAH variants are the most common causes of HPAs, particularly as regards mild human phenotypes.  相似文献   

16.
Multifunctional specificity of the protein C/activated protein C Gla domain   总被引:1,自引:0,他引:1  
Activated protein C (APC) has potent anticoagulant and anti-inflammatory properties that are mediated in part by its interactions with its cofactor protein S and the endothelial cell protein C receptor (EPCR). The protein C/APC Gla domain is implicated in both interactions. We sought to identify how the protein C Gla domain enables specific protein-protein interactions in addition to its conserved role in phospholipid binding. The human prothrombin Gla domain, which cannot bind EPCR or support protein S cofactor activity, has 22/45 residues that are not shared with the human protein C Gla domain. We hypothesized that the unique protein C/APC Gla domain residues were responsible for mediating the specific interactions. To assess this, we generated 13 recombinant protein C/APC variants incorporating the prothrombin residue substitutions. Despite anticoagulant activity similar to wild-type APC in the absence of protein S, APC variants APC(PT33-39) (N33S/V34S/D35T/D36A/L38D/A39V) and APC(PT36/38/39) (D36A/L38D/A39V) were not stimulated by protein S, whereas APC(PT35/36) (D35T/D36A) exhibited reduced protein S sensitivity. Moreover, PC(PT8/10) (L8V/H10K) displayed negligible EPCR affinity, despite normal binding to anionic phospholipid vesicles and factor Va proteolysis in the presence and absence of protein S. A single residue variant, PC(PT8), also failed to bind EPCR. Factor VIIa, which also possesses Leu-8, bound soluble EPCR with similar affinity to wild-type protein C, collectively confirming Leu-8 as the critical residue for EPCR recognition. These results reveal the specific Gla domain residues responsible for mediating protein C/APC molecular recognition with both its cofactor and receptor and further illustrate the multifunctional potential of Gla domains.  相似文献   

17.
Isetti G  Maurer MC 《Biochemistry》2004,43(14):4150-4159
In blood coagulation, thrombin helps to activate factor XIII by cleaving the activation peptide at the R37-G38 peptide bond. The residues N-terminal to the scissile bond are important in determining rates of hydrolysis. Solution studies of wild-type and mutant peptides of factor XIII AP (28-37) suggest residues P(4)-P(1) are most critical in substrate recognition. By contrast, the X-ray crystal structure of FXIII AP (28-37) displays all of the residues, P(10)-P(1), interacting with the thrombin active site in a conformation similar to that of fibrinogen Aalpha (7-16) [Sadasivan, C., and Yee, V. C. (2000) J. Biol. Chem. 275, 36942-36948]. Peptides were therefore synthesized with the N-terminal P(10)-P(6) residues removed to further characterize interactions of thrombin with factor XIII activation peptides. The truncations have no adverse effects on thrombin's ability to bind and to hydrolyze the shortened peptides. The wild-type FXIII AP (33-41) V34 sequence actually exhibits a decrease in K(m) relative to the longer (28-41) sequence whereas the cardioprotective FXIII AP (33-41) V34L exhibits a further increase in k(cat) relative to its longer parent sequence. One-dimensional proton line broadening NMR and 2D transferred-NOESY studies indicate that the shortened peptides maintain similar bound conformations as their FXIII AP (28-37) counterparts. Furthermore, the distinctive NOE between the L34 and P36 side chains is preserved. Kinetic and NMR studies thus reveal that the N-terminal portions of FXIII AP (28-37) (V34 and V34L) are not necessary for effective interaction with the thrombin active site surface. FXIII activation peptides bind to thrombin in a manner more like PAR1 than fibrinogen Aalpha.  相似文献   

18.
Omote H  Figler RA  Polar MK  Al-Shawi MK 《Biochemistry》2004,43(13):3917-3928
A glycine 185 to valine mutation of human P-glycoprotein (ABCB1, MDR1) has been previously isolated from high colchicine resistance cell lines. We have employed purified and reconstituted P-glycoproteins expressed in Saccharomyces cerevisiae [Figler et al. (2000) Arch. Biochem. Biophys. 376, 34-46] and devised a set of thermodynamic analyses to reveal the mechanism of improved resistance. Purified G185V enzyme shows altered basal ATPase activity but a strong stimulation of colchicine- and etoposide-dependent activities, suggesting a tight regulation of ATPase activity by these drugs. The mutant enzyme has a higher apparent K(m) for colchicine and a lower K(m) for etoposide than that of wild type. Kinetic constants for other transported drugs were not significantly modified by this mutation. Systematic thermodynamic analyses indicate that the G185V enzyme has modified thermodynamic properties of colchicine- and etoposide-dependent activities. To improve the rate of colchicine or etoposide transport, the G185V enzyme has lowered the Arrhenius activation energy of the transport rate-limiting step. The high transition state energies of wild-type P-glycoprotein, when transporting etoposide or colchicine, increase the probability of nonproductive degradation of the transition state without transport. G185V P-glycoprotein transports etoposide or colchicine in an energetically more efficient way with decreased enthalpic and entropic components of the activation energy. Our new data fully reconcile the apparently conflicting results of previous studies. EPR analysis of the spin-labeled G185C enzyme in a cysteine-less background and kinetic parameters of the G185C enzyme indicate that position 185 is surrounded by other residues and is volume sensitive. These results and atomic detail structural modeling suggest that residue 185 is a pivotal point in transmitting conformational changes between the catalytic sites and the colchicine drug binding domain. Replacement of this residue with a bulky valine alters this communication and results in more efficient transport of etoposide or colchicine.  相似文献   

19.
The M(3) muscarinic receptor is a prototypical member of the class A family of G protein-coupled receptors (GPCRs). To gain insight into the structural mechanisms governing agonist-mediated M(3) receptor activation, we recently developed a genetically modified yeast strain (Saccharomyces cerevisiae) which allows the efficient screening of large libraries of mutant M(3) receptors to identify mutant receptors with altered/novel functional properties. Class A GPCRs contain a highly conserved Asp residue located in transmembrane domain II (TM II; corresponding to Asp-113 in the rat M(3) muscarinic receptor) which is of fundamental importance for receptor activation. As observed previously with other GPCRs analyzed in mammalian expression systems, the D113N point mutation abolished agonist-induced receptor/G protein coupling in yeast. We then subjected the D113N mutant M(3) receptor to PCR-based random mutagenesis followed by a yeast genetic screen to recover point mutations that can restore G protein coupling to the D113N mutant receptor. A large scale screening effort led to the identification of three such second-site suppressor mutations, R165W, R165M, and Y250D. When expressed in the wild-type receptor background, these three point mutations did not lead to an increase in basal activity and reduced the efficiency of receptor/G protein coupling. Similar results were obtained when the various mutant receptors were expressed and analyzed in transfected mammalian cells (COS-7 cells). Interestingly, like Asp-113, Arg-165 and Tyr-250, which are located at the cytoplasmic ends of TM III and TM V, respectively, are also highly conserved among class A GPCRs. Our data suggest a conformational link between the highly conserved Asp-113, Arg-165, and Tyr-250 residues which is critical for receptor activation.  相似文献   

20.
Residues D271, H192, H302 and N300 of L-3,4-dihydroxyphenylalanine decarboxylase (DDC), a homodimeric pyridoxal 5'-phosphate (PLP) enzyme, were mutated in order to acquire information on the catalytic mechanism. These residues are potential participants in catalysis because they belong to the common PLP-binding structural motif of group I, II and III decarboxylases and other PLP enzymes, and because they are among the putative active-site residues of structural modelled rat liver DDC. The spectroscopic features of the D271E, H192Q, H302Q and N300A mutants as well as their dissociation constants for PLP suggest that substitution of each of these residues causes alteration of the state of the bound coenzyme molecule and of the conformation of aromatic amino acids, possibly in the vicinity of the active site. This supports, but does not prove, the possibility that these residues are located in the coenzyme-binding cleft. Interestingly, mutation of each residue generates an oxidative decarboxylase activity towards L-3,4-dihydroxyphenylalanine (L-Dopa), not inherent in the wild-type in aerobiosis, and reduces the nonoxidative decarboxylase activity of L-Dopa from 3- to 390-fold. The partition ratio between oxidative and nonoxidative decarboxylation ranges from 5.7 x 10(-4) for N300A mutant to 946 x 10(-4) for H302Q mutant. Unlike wild-type enzyme, the mutants catalyse these two reactions to the same extent either in the presence or absence of O2. In addition, all four mutants exhibit an extremely low level of the oxidative deaminase activity towards serotonin with respect to wild-type. All these findings demonstrate that although D271, H192, H302 and N300 are not essential for catalysis, mutation of these residues alters the nature of catalysis. A possible relationship among the integrity of the PLP cleft, the productive binding of O2 and the transition to a closed conformational state of DDC is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号