首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We analyse optimal and heuristic place prioritization algorithms for biodiversity conservation area network design which can use probabilistic data on the distribution of surrogates for biodiversity. We show how an Expected Surrogate Set Covering Problem (ESSCP) and a Maximal Expected Surrogate Covering Problem (MESCP) can be linearized for computationally efficient solution. For the ESSCP, we study the performance of two optimization software packages (XPRESS and CPLEX) and five heuristic algorithms based on traditional measures of complementarity and rarity as well as the Shannon and Simpson indices of α‐diversity which are being used in this context for the first time. On small artificial data sets the optimal place prioritization algorithms often produced more economical solutions than the heuristic algorithms, though not always ones guaranteed to be optimal. However, with large data sets, the optimal algorithms often required long computation times and produced no better results than heuristic ones. Thus there is generally little reason to prefer optimal to heuristic algorithms with probabilistic data sets.  相似文献   

3.
Accurate prediction of pseudoknotted nucleic acid secondary structure is an important computational challenge. Prediction algorithms based on dynamic programming aim to find a structure with minimum free energy according to some thermodynamic ("sum of loop energies") model that is implicit in the recurrences of the algorithm. However, a clear definition of what exactly are the loops in pseudoknotted structures, and their associated energies, has been lacking. In this work, we present a complete classification of loops in pseudoknotted nucleic secondary structures, and describe the Rivas and Eddy and other energy models as sum-of-loops energy models. We give a linear time algorithm for parsing a pseudoknotted secondary structure into its component loops. We give two applications of our parsing algorithm. The first is a linear time algorithm to calculate the free energy of a pseudoknotted secondary structure. This is useful for heuristic prediction algorithms, which are widely used since (pseudoknotted) RNA secondary structure prediction is NP-hard. The second application is a linear time algorithm to test the generality of the dynamic programming algorithm of Akutsu for secondary structure prediction.Together with previous work, we use this algorithm to compare the generality of state-of-the-art algorithms on real biological structures.  相似文献   

4.
An evolutionary Monte Carlo algorithm for predicting DNA hybridization   总被引:1,自引:0,他引:1  
Kim JS  Lee JW  Noh YK  Park JY  Lee DY  Yang KA  Chai YG  Kim JC  Zhang BT 《Bio Systems》2008,91(1):69-75
Many DNA-based technologies, such as DNA computing, DNA nanoassembly and DNA biochips, rely on DNA hybridization reactions. Previous hybridization models have focused on macroscopic reactions between two DNA strands at the sequence level. Here, we propose a novel population-based Monte Carlo algorithm that simulates a microscopic model of reacting DNA molecules. The algorithm uses two essential thermodynamic quantities of DNA molecules: the binding energy of bound DNA strands and the entropy of unbound strands. Using this evolutionary Monte Carlo method, we obtain a minimum free energy configuration in the equilibrium state. We applied this method to a logical reasoning problem and compared the simulation results with the experimental results of the wet-lab DNA experiments performed subsequently. Our simulation predicted the experimental results quantitatively.  相似文献   

5.
Current theories of plant invasion have been criticized for their limited heuristic and predictive value. We explore the heuristic and predictive potential of a model which explicitly simulates the mechanisms of plant invasion. The model, a spatially-explicit individual-based simulation, is applied to the invasion of pine trees (Pinus spp.; Pinaceae) in three vegetation types in the southern hemisphere. The model simulates factors which have been invoked as major determinants of invasive success: plant traits, environmental features and disturbance level. Results show that interactions between these determinants of invasive success are at least as important as the main effects. The complexity of invasions has promoted the belief that many factors must be invoked to explain invasions. This study shows that by incorporating interactions and mechanisms into our models we can potentially reduce the number of factors needed to predict plant invasions. The importance of interactions, however, means that predictions about invasions must be context-specific. The search for all-encompassing rules for invasions is therefore futile. The model presented here is of heuristic value since it improves our understanding of invasions, and of management value since it defines the data and models needed for predicting invasions.  相似文献   

6.
7.
We present an algorithm that calculates the optimal binding conformation and free energy of two RNA molecules, one or both oligomeric. This algorithm has applications to modeling DNA microarrays, RNA splice-site recognitions and other antisense problems. Although other recent algorithms perform the same calculation in time proportional to the sum of the lengths cubed, O((N1 + N2)3), our oligomer binding algorithm, called bindigo, scales as the product of the sequence lengths, O(N1*N2). The algorithm performs well in practice with the aid of a heuristic for large asymmetric loops. To demonstrate its speed and utility, we use bindigo to investigate the binding proclivities of U1 snRNA to mRNA donor splice sites.  相似文献   

8.
The paper investigates the computational problem of predicting RNA secondary structures. The general belief is that allowing pseudoknots makes the problem hard. Existing polynomial-time algorithms are heuristic algorithms with no performance guarantee and can handle only limited types of pseudoknots. In this paper, we initiate the study of predicting RNA secondary structures with a maximum number of stacking pairs while allowing arbitrary pseudoknots. We obtain two approximation algorithms with worst-case approximation ratios of 1/2 and 1/3 for planar and general secondary structures, respectively. For an RNA sequence of n bases, the approximation algorithm for planar secondary structures runs in O(n(3)) time while that for the general case runs in linear time. Furthermore, we prove that allowing pseudoknots makes it NP-hard to maximize the number of stacking pairs in a planar secondary structure. This result is in contrast with the recent NP-hard results on psuedoknots which are based on optimizing some general and complicated energy functions.  相似文献   

9.
Computational tools for prediction of the secondary structure of two or more interacting nucleic acid molecules are useful for understanding mechanisms for ribozyme function, determining the affinity of an oligonucleotide primer to its target, and designing good antisense oligonucleotides, novel ribozymes, DNA code words, or nanostructures. Here, we introduce new algorithms for prediction of the minimum free energy pseudoknot-free secondary structure of two or more nucleic acid molecules, and for prediction of alternative low-energy (sub-optimal) secondary structures for two nucleic acid molecules. We provide a comprehensive analysis of our predictions against secondary structures of interacting RNA molecules drawn from the literature. Analysis of our tools on 17 sequences of up to 200 nucleotides that do not form pseudoknots shows that they have 79% accuracy, on average, for the minimum free energy predictions. When the best of 100 sub-optimal foldings is taken, the average accuracy increases to 91%. The accuracy decreases as the sequences increase in length and as the number of pseudoknots and tertiary interactions increases. Our algorithms extend the free energy minimization algorithm of Zuker and Stiegler for secondary structure prediction, and the sub-optimal folding algorithm by Wuchty et al. Implementations of our algorithms are freely available in the package MultiRNAFold.  相似文献   

10.
The problem of identifying meaningful patterns (i.e., motifs) from biological data has been studied extensively due to its paramount importance. Three versions of this problem have been identified in the literature. One of these three problems is the planted (l, d)-motif problem. Several instances of this problem have been posed as a challenge. Numerous algorithms have been proposed in the literature that address this challenge. Many of these algorithms fall under the category of heuristic algorithms. In this paper we present algorithms for the planted (l, d)-motif problem that always find the correct answer(s). Our algorithms are very simple and are based on some ideas that are fundamentally different from the ones employed in the literature. We believe that the techniques we introduce in this paper will find independent applications.  相似文献   

11.
Huang W  Liu J 《Biopolymers》2006,82(2):93-98
We studied a three-dimensional off-lattice AB model with two species of monomers, hydrophobic (A) and hydrophilic (B), and present two optimization algorithms: face-centered-cubic (FCC)-lattice pruned-enriched-Rosenbluth method (PERM) and subsequent conjugate gradient (PERM++) minimization and heuristic conjugate gradient (HCG) simulation based on "off-trap" strategy. In PERM++, we apply the PERM to the FCC-lattice to produce the initial conformation, and conjugate gradient minimization is then used to reach the minimum energy state. Both algorithms have been tested in the three-dimensional AB model for all sequences with lengths 13 < or = n < or = 55. The numerical results show that the proposed methods are very promising for finding the ground states of proteins. In several cases, we renew the putative ground states energy values.  相似文献   

12.
The field of heuristic computer programming, which in the past decade has undergone extensive development, has come up against the difficulty of formalizing problem- solving methods peculiar to human beings. From this difficulty has arisen the problem of the relationship between heuristics (methods of heuristic search) and algorithms. In characterizing existing heuristic programs, their formulators have noted that there exists no sharp boundary between heuristics and algorithms (10). Differences that are recognized in this area result merely from the scope of the class of problems for which a program is constructed and the attendant features of the programs, such as the criteria of choice of attributes, systematization, selectivity, etc., rather than from the fundamental structure of heuristics and algorithms or their form of expression (10).  相似文献   

13.
Fast evaluation of internal loops in RNA secondary structure prediction.   总被引:7,自引:0,他引:7  
MOTIVATION: Though not as abundant in known biological processes as proteins, RNA molecules serve as more than mere intermediaries between DNA and proteins. Research in the last 15 years demonstrates that RNA molecules serve in many roles, including catalysis. Furthermore, RNA secondary structure prediction based on free energy rules for stacking and loop formation remains one of the few major breakthroughs in the field of structure prediction, as minimum free energy structures and related quantities can be computed with full mathematical rigor. However, with the current energy parameters, the algorithms used hitherto suffer the disadvantage of either employing heuristics that risk (though highly unlikely) missing the optimal structure or becoming prohibitively time consuming for moderate to large sequences. RESULTS: We present a new method to evaluate internal loops utilizing currently used energy rules. This method reduces the time complexity of this part of the structure prediction from O(n4) to O(n3), thus reducing the overall complexity to O(n3). Even when the size of evaluated internal loops is bounded by k (a commonly used heuristic), the method presented has a competitive edge by reducing the time complexity of internal loop evaluation from O(k2n2) to O(kn2). The method also applies to the calculation of the equilibrium partition function. AVAILABILITY: Source code for an RNA secondary structure prediction program implementing this method is available at ftp://www.ibc.wustl.edu/pub/zuker/zuker .tar.Z  相似文献   

14.
A fully automatic procedure for predicting the amino acid sequences compatible with a given target structure is described. It is based on the CHARMM package, and uses an all atom force-field and rotamer libraries to describe and evaluate side-chain types and conformations. Sequences are ranked by a quantity akin to the free energy of folding, which incorporates hydration effects. Exact (Branch and Bound) and heuristic optimisation procedures are used to identifying highly scoring sequences from an astronomical number of possibilities. These sequences include the minimum free energy sequence, as well as all amino acid sequences whose free energy lies within a specified window from the minimum. Several applications of our procedure are illustrated. Prediction of side-chain conformations for a set of ten proteins yields results comparable to those of established side-chain placement programs. Applications to sequence optimisation comprise the re-design of the protein cores of c-Crk SH3 domain, the B1 domain of protein G and Ubiquitin, and of surface residues of the SH3 domain. In all calculations, no restrictions are imposed on the amino acid composition and identical parameter settings are used for core and surface residues. The best scoring sequences for the protein cores are virtually identical to wild-type. They feature no more than one to three mutations in a total of 11-16 variable positions. Tests suggest that this is due to the balance between various contributions in the force-field rather than to overwhelming influence from packing constraints. The effectiveness of our force-field is further supported by the sequence predictions for surface residues of the SH3 domain. More mutations are predicted than in the core, seemingly in order to optimise the network of complementary interactions between polar and charged groups. This appears to be an important energetic requirement in absence of the partner molecules with which the SH3 domain interacts, which were not included in the calculations. Finally, a detailed comparison between the sequences generated by the heuristic and exact optimisation algorithms, commends a note of caution concerning the efficiency of heuristic procedures in exploring sequence space.  相似文献   

15.
In this study, we address the meta-task scheduling problem in heterogeneous computing (HC) systems, which is to find a task assignment that minimizes the schedule length of a meta-task composed of several independent tasks with no data dependencies. The fact that the meta-task scheduling problem in HC systems is NP-hard has motivated the development of many heuristic scheduling algorithms. These heuristic algorithms, however, neglect the stochastic nature of task execution times in an attempt to minimize a deterministic objective function, which is the maximum of the expected values of machine loads. Contrary to existing heuristics, we account for this stochastic nature by modeling task execution times as random variables. We, then, formulate a stochastic scheduling problem where the objective is to minimize the expected value of the maximum of machine loads. We prove that this new objective is underestimated by the deterministic objective function and that an optimal task assignment obtained with respect to the deterministic objective function could be inefficient in a real computing platform. In order to solve the stochastic scheduling problem posed, we develop a genetic algorithm based scheduling heuristic. Our extensive simulation studies show that the proposed genetic algorithm can produce better task assignments as compared to existing heuristics. Specifically, we observe a performance improvement on the relative cost heuristic (M.-Y. Wu and W. Shu, A high-performance mapping algorithm for heterogeneous computing systems, in: Int. Parallel and Distributed Processing Symposium, San Francisco, CA, April 2001) by up to 61%.  相似文献   

16.
In this paper we propose a new formulation for the Resource Constrained Project Scheduling Problem (RCPSP) and minimum makespan objective. The new formulation exploits three variables, one associated with the start time of an activity, one associated with the finish time of an activity, and the last one associated with the amount of an activity in progress at a given time. We provide an extensive experimentation, and a comparison with known mathematical formulations for the RCPSP in the literature.  相似文献   

17.
In this article, we address the problem of designing a string with optimal complementarity properties with respect to another given string according to a given criterion. The motivation comes from a drug design application, in which the complementarity between two sequences (proteins) is measured according to the values of the hydropathic coefficients associated with the sequence elements (amino acids). We present heuristic and exact optimization algorithms, and we report on some computational experiments on amino peptides taken from Semaphorin and human Interleukin-1β, which have already been investigated in the literature using heuristic algorithms. With our techniques, we proved the optimality of a known solution for Semaphorin-3A, and we discovered several other optimal and near-optimal solutions in a short computing time; we also found in fractions of a second an optimal solution for human interleukin-1β, whose complementary value is one order of magnitude better than previously known ones. The source code of a prototype C++ implementation of our algorithms is freely available for noncommercial use on the web. As a main result, we showed that in this context mathematical programming methods are more successful than heuristics, such as simulated annealing. Our algorithm unfolds its potential, especially when different measures could be used for scoring peptides, and is able to provide not only a single optimal solution, but a ranking of provable good ones; this ranking can then be used by biologists as a starting basis for further refinements, simulations, or in vitro experiments.  相似文献   

18.
Bioinspired algorithms, such as evolutionary algorithms and ant colony optimization, are widely used for different combinatorial optimization problems. These algorithms rely heavily on the use of randomness and are hard to understand from a theoretical point of view. This paper contributes to the theoretical analysis of ant colony optimization and studies this type of algorithm on one of the most prominent combinatorial optimization problems, namely the traveling salesperson problem (TSP). We present a new construction graph and show that it has a stronger local property than one commonly used for constructing solutions of the TSP. The rigorous runtime analysis for two ant colony optimization algorithms, based on these two construction procedures, shows that they lead to good approximation in expected polynomial time on random instances. Furthermore, we point out in which situations our algorithms get trapped in local optima and show where the use of the right amount of heuristic information is provably beneficial.  相似文献   

19.
《The Journal of cell biology》1996,133(6):1347-1353
To determine whether tubulin molecules transported in axons are polymers or oligomers, we carried out electron microscopic analysis of the movement of the tubulin molecules after photoactivation. Although previous optical microscopic analyses after photobleaching or photoactivation had suggested that most of the axonal microtubules were stationary, they were not sufficiently sensitive to allow detection of actively transported tubulin molecules which were expected to be only a small fraction of total tubulin molecules in axons. In addition, some recent studies using indirect approaches suggested active polymer transport as a mechanism for tubulin transport (Baas, P.W., F.J. Ahmad. 1993. J. Cell Biol. 120:1427-1437; Yu, W., V.E. Centonze, F.J. Ahmad, and P.W. Bass, 1993, J. Cell Biol. 122:349-359; Ahmad, F.J., and P.W. Bass. 1995. J. Cell Sci. 108:2761-2769). So, whether transported tubulin molecules are polymers or not remain to be determined. To clear up this issue, we made fluorescent marks on the tubulin molecules in the axons using a photoactivation technique and performed electron microscopic immunocytochemistry using anti-fluorescein antibody. Using this new method we achieved high resolution and high sensitivity for detecting the transported tubulin molecules. In cells fixed after permeabilization, we found no translocated microtubules. In those fixed without permeabilization, in which oligomers and heterodimers in addition to polymers were preserved, we found much more label in the regions distal to the photoactivated regions than in the proximal regions. These data indicated that tubulin molecules are transported not as polymers but as heterodimers or oligomers by an active mechanism rather than by diffusion.  相似文献   

20.
On combinatorial DNA word design.   总被引:1,自引:0,他引:1  
We consider the problem of designing DNA codes, namely sets of equi-length words over the alphabet [A, C, G, T] that satisfy certain combinatorial constraints. This problem is motivated by the task of reliably storing and retrieving information in synthetic DNA strands for use in DNA computing or as molecular bar codes in chemical libraries. The primary constraints that we consider, defined with respect to a parameter d, are as follows: for every pair of words w, x in a code, there are at least d mismatches between w and x if w not equal x and also between the reverse of w and the Watson-Crick complement of x. Extending classical results from coding theory, we present several upper and lower bounds on the maximum size of such DNA codes and give methods for constructing such codes. An additional constraint that is relevant to the design of DNA codes is that the free energies and enthalpies of the code words, and thus the melting temperatures, be similar. We describe dynamic programming algorithms that can (a) calculate the total number of words of length n whose free energy value, as approximated by a formula of Breslauer et al. (1986) falls in a given range, and (b) output a random such word. These algorithms are intended for use in heuristic algorithms for constructing DNA codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号