首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With information on fossils and extant distribution of diversity/endemism in the mahogany family, we perform a global biogeographic study of Meliaceae using plastid rbcL data for all subfamilies, tribes and nearly all genera. Our study indicates that: (1) Meliaceae are of western Gondwanan origin; (2) dispersal played an important role for the current distribution of mahogany biota; and (3) the direction of dispersal was most likely an "out-of-Africa" scenario with important dispersal routes across Eurasia and between Eurasia and North America provided by Beringia and the North Atlantic land bridge and North America and South America via island chains and/or direct land connections. Populations in North America, Europe, and East Asia were presumably eliminated as tropical climates disappeared from these areas during the Miocene. Extensive Meliaceae fossil findings confirm that the entry of megathermal (frost-intolerant) angiosperms into southern continents from Oligocene to Pliocene must be considered as an important means of establishing pantropical distribution patterns.  相似文献   

2.
Peña, C., Nylin, S., Freitas, A. V. L. & Wahlberg, N. (2010). Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae).—Zoologica Scripta, 39, 243–258. The diverse butterfly subtribe Euptychiina was thought to be restricted to the Americas. However, there is mounting evidence for the Oriental Palaeonympha opalina being part of Euptychiina and thus a disjunct distribution between it (in eastern Asia) and its sister taxon (in eastern North America). Such a disjunct distribution in both eastern Asia and eastern North America has never been reported for any butterfly taxon. We used 4447 bp of DNA sequences from one mitochondrial gene and four nuclear genes for 102 Euptychiina taxa to obtain a phylogenetic hypothesis of the subtribe, estimate dates of origin and diversification for major clades and perform a biogeographic analysis. Euptychiina originated 31 Ma in South America. Early Euptychiina dispersed from North to South America via the temporary connection known as GAARlandia during Eocene–Oligocene times. The current disjunct distribution of the Oriental Palaeonympha opalina is the result of a northbound dispersal of a lineage from South America into eastern Asia via North America. The common ancestor of Palaeonympha and its sister taxon Megisto inhabited the continuous forest belt across North Asia and North America, which was connected by Beringia. The closure of this connection caused the split between Palaeonympha and Megisto around 13 Ma and the severe extinctions in western North America because of the climatic changes of the Late Miocene (from 13.5 Ma onwards) resulted in the classic ‘eastern Asia and eastern North America’ disjunct distribution.  相似文献   

3.
Repeated glacial events during the Pleistocene fragmented and displaced populations throughout the northern continents. Different models of the effects of these climate-driven events predict distinct phylogeographic and population genetic outcomes for high-latitude faunas. The role of glaciations in (i) promoting intraspecific genetic differentiation and (ii) influencing genetic diversity was tested within a phylogeographic framework using the rodent Microtus oeconomus. The spatial focus for the study was Beringia, which spans eastern Siberia and northwestern North America, and was a continental crossroads and potential high arctic refugium during glaciations. Variation in mitochondrial DNA (cytochrome b and control region; 214 individuals) and nuclear DNA (ALDH1 intron; 63 individuals) was investigated across the Beringian region. Close genetic relationships among populations on either side of the Bering Strait are consistent with a history of periodic land connections between North America and Asia. A genetic discontinuity observed in western Beringia between members of a Central Asian clade and a Beringian clade is geographically congruent with glacial advances and with phylogeographic discontinuities identified in other organisms. Divergent island populations in southern Alaska were probably initially isolated by glacial vicariance, but subsequent differentiation has resulted from insularity. Tests of the genetic effects of postglacial colonization were largely consistent with expansion accompanied by founder effect bottlenecking, which yields reduced diversity in populations from recently deglaciated areas. Evidence that populations in the Beringian clade share a history of expansion from a low-diversity ancestral population suggests that Beringia was colonized by a small founder population from central Asia, which subsequently expanded in isolation.  相似文献   

4.
The number and location of Arctic glacial refugia utilized by taxa during the Pleistocene are continuing uncertainties in Holarctic phylogeography. Arctic grayling (Thymallus arcticus) are widely distributed in freshwaters from the eastern side of Hudson Bay (Canada) west to central Asia. We studied mitochondrial DNA (mtDNA) and microsatellite DNA variation in North American T. arcticus to test for genetic signatures of survival in, and postglacial dispersal from, multiple glacial refugia, and to assess their evolutionary affinities with Eurasian Thymallus. In samples from 32 localities, we resolved 12 mtDNA haplotypes belonging to three assemblages that differed from each other in sequence by between 0.75 and 2.13%: a 'South Beringia' lineage found from western Alaska to northern British Columbia, Canada; a 'North Beringia' lineage found on the north slope of Alaska, the lower Mackenzie River, and to eastern Saskatchewan; and a 'Nahanni' lineage confined to the Nahanni River area of the upper Mackenzie River drainage. Sequence analysis of a portion of the control region indicated monophyly of all North American T. arcticus and their probable origin from eastern Siberian T. arcticus at least 3 Mya. Arctic grayling sampled from 25 localities displayed low allelic diversity and expected heterozygosity (H(E)) across five microsatellite loci (means of 2.1 alleles and 0.27 H(E), respectively) and there were declines in these measures of genetic diversity with distance eastward from the lower Yukon River Valley. Assemblages defined by mtDNA divergences were less apparent at microsatellite loci, but again the Nahanni lineage was the most distinctive. Analysis of molecular variance indicated that between 24% (microsatellite DNA) and 81% (mtDNA) of the variance was attributable to differences among South Beringia, North Beringia and Nahanni lineages. Our data suggest that extant North American Arctic grayling are more diverse phylogeographically than previously suspected and that they consist of at least three major lineages that originated in distinct Pleistocene glacial refugia. T. arcticus probably originated and dispersed from Eurasia to North America in the late to mid-Pliocene, but our data also suggest more recent (mid-late Pleistocene) interactions between lineages across Beringia.  相似文献   

5.
This review shows a close biogeographic connection between eastern Asia and western North America from the late Cretaceous to the late Neogene in major lineages of vascular plants (flowering plants, gymnosperms, ferns and lycophytes). Of the eastern Asian–North American disjuncts, conifers exhibit a high proportion of disjuncts between eastern Asia and western North America. Several lineages of ferns also show a recent disjunct pattern in the two areas. In flowering plants, the pattern is commonly shown in temperate elements between northeastern Asia and northwestern North America, as well as elements of the relict boreotropical and Neogene mesophytic and coniferous floras. The many cases of intercontinental biogeographic disjunctions between eastern Asia and western North America in plants supported by recent phylogenetic analyses highlight the importance of the Bering land bridge and/or the plant migrations across the Beringian region from the late Cretaceous to the late Neogene, especially during the Miocene. The Beringian region has permitted the filtering and migration of certain plant taxa since the Pliocene after the opening of the Bering Strait, as many conspecific taxa or closely related species occur on both sides of Beringia.  相似文献   

6.
Beringia (eastern Asia, Alaska, northwest Canada) has been a land‐bridge dispersal route between Asia and North America intermittently since the Mesozoic Era. The Quaternary, the most recent period of exchange, is characterized by large, geologically rapid climate fluctuations and sea‐level changes that alternately expose and inundate the land‐bridge region. Insights into how Quaternary land‐bridge geography has controlled species exchange and assembly of the North American flora comes from focusing on a restricted community with narrow ecological tolerances: species that are today restricted to isolated steppe habitats (dry grasslands) in the Subarctic. We evaluated (i) potential controls over current spatial distributions of steppe plants and their pollinators in Alaska and Yukon and (ii) their ecological distributions in relation to potential biogeographic histories. Taxa present in North America that are disjunct from Asia tended to have larger altitudinal ranges (tolerating colder temperatures) than taxa disjunct from farther south in North America, which were largely restricted to the warmest, lowest‐elevation sites. Ecological findings support the following biogeographic scenarios. Migration from Asia via the land‐bridge occurred during Quaternary glacial periods when conditions were colder and drier than today. While a corridor for migration of cold‐tolerant species of cold steppe and tundra, the land bridge acted as a filter that excluded warmth‐demanding species. Migration from North America occurred under warm, dry interglacial conditions; thermophilous North American disjuncts taking this route may have long histories in Beringia, or they may have migrated recently during the relatively warm and dry early Holocene, when forest cover was incomplete.  相似文献   

7.
The response of Arctic organisms and their parasites to dramatic fluctuations in climate during the Pleistocene has direct implications for predicting the impact of current climate change in the North. An increasing number of phylogeographical studies in the Arctic have laid a framework for testing hypotheses concerning the impact of shifting environmental conditions on transcontinental movement. We review 35 phylogeographical studies of trans-Beringian terrestrial and freshwater taxa, both hosts and parasites, to identify generalized patterns regarding the number, direction and timing of trans-continental colonizations. We found that colonization across Beringia was primarily from Asia to North America, with many events occurring in the Quaternary period. The 35 molecular studies of trans-Beringian organisms we examined focused primarily on the role of glacial cycles and refugia in promoting diversification. We address the value of establishing testable hypotheses related to high-latitude biogeography. We then discuss future prospects in Beringia related to coalescent theory, palaeoecology, ancient DNA and synthetic studies of arctic host–parasite assemblages highlighting their cryptic diversity, biogeography and response to climate variation.  相似文献   

8.
Leibnitzia comprises six species of perennial herbs that are adapted to high elevation conditions and is one of only two Asteraceae genera known to have an exclusively disjunct distribution spanning central to eastern Asia and North America. Molecular phylogenetic analysis of Leibnitzia and other Gerbera-complex members indicates that Leibnitzia is monophyletic, which is in contrast with our expectation that the American Leibnitzia species L. Lyrata and L. Occimadremis would be more closely related to another American member of the Gerbera-complex, namely Chaptalia. Ancestral area reconstructions show that the historical biogeography of the Gerbera-complex mirrors that of the entire Asteraceae, with early diverging lineages located in South America that were followed by transfers to Africa and Eurasia and, most recently, to North America. Intercontinental transfer of Leibnitzia appears to have been directed from Asia to North America. Independent calibrations of nuclear (ribosomal DNA internal transcribed spacer region) and chloroplast (trnL-rpl32 intron) DNA sequence data using relaxed clock methods and either mean rate or fossil-based priors unanimously support Miocene and younger divergence times for Gerbera-complex taxa. The ages are not consistent with most Gondwanan vicariance episodes and, thus, the global distribution of Gerbera-complex members must be explained in large part by long-distance dispersal. American species of Leibnitzia are estimated to have diverged from then- Asian ancestor during the Quaternary (ca. 2 mya) and either migrated overland to North America via Beringia and retreated southwards along high elevation corridors to their- present location in southwestern North America or were dispersed long distance.  相似文献   

9.
Dispersal and migration are important processes affecting the evolutionary history and genetics of species. Here we investigate post-glacial migration and gene flow in Trillium grandiflorum (Melanthiaceae), a wide-ranging, forest herb from eastern North America. Using phylogeographic approaches, we examined cpDNA and allozyme diversity in 35 populations of T. grandiflorum sampled from throughout the geographic range of the species. Nested clade analysis (NCA) of cpDNA haplotypes indicated that T. grandiflorum likely survived in two refugia in the southeastern US during the last glaciation and that long-distance dispersal characterized the post-glacial recolonization of northern areas. There was no evidence for reduced allozyme diversity in populations from glaciated compared to ice-free regions, probably because of the greater abundance and larger effective size of populations in the north. An analysis of isolation-by-distance based on the allozyme data suggested a pattern of population differentiation consistent with restricted gene flow. Notwithstanding the significance of rare seed dispersal events for migration, a comparison of allozyme and cpDNA genetic structure indicates that pollen flow between populations is more likely than seed dispersal. These results for T. grandiflorum represent the first phylogeographic analysis of a temperate woodland herb in eastern North America and support the importance of occasional long-distance dispersal events in the post-glacial migration of plants.  相似文献   

10.
Aim Presentation of an hypothesis suggesting that the extraordinarily similarity of the Russian Altai and the American Southern Rocky Mountain Flora represents an Oroboreal Flora; that had to have had an essential continuity across the northern part of the world in the Tertiary period, constituting a highland and steppe component of the better‐known Arcto‐Tertiary Flora of eastern and far‐western North America and eastern Asia. Location North America and Middle (Altai) Asia. Methods Summarization of the author's field and herbarium studies of whole floras over a period of over 60 years, consisting of successive specializations in vascular plants, lichens, and bryophytes. Main conclusions (1) The modern alpine and associated marginal steppe and montane floras contain taxa of Tertiary age. (2) The floras of the southern mountains antedate those of the present‐day Arctic. (3) The Middle Asiatic and the North American floras once enjoyed a contiguous existence over a broad area involving connections between North America and Asia across the North Pole by way of Greenland. Their present disjunctions are products of extinction and attrition of ranges, not of long‐distance migration or dispersal mechanisms. (4) North‐eastern North American disjunctions of so‐called Cordilleran species (the Nunatak hypothesis) need not require explanations involving long‐distance dispersal or migration, but represent relictual populations of the once widely distributed Oroboreal flora.  相似文献   

11.
Although the iconic mammoth of the Late Pleistocene, the woolly mammoth (Mammuthus primigenius), has traditionally been regarded as the end point of a single anagenetically evolving lineage, recent paleontological and molecular studies have shown that successive allopatric speciation events must have occurred within Pleistocene Mammuthus in Asia, with subsequent expansion and hybridization between nominal taxa [1, 2]. However, the role of North American mammoth populations in these events has not been adequately explored from an ancient-DNA standpoint. To undertake this task, we analyzed mtDNA from a large data set consisting of mammoth samples from across Holarctica (n = 160) and representing most of radiocarbon time. Our evidence shows that, during the terminal Pleistocene, haplotypes originating in and characteristic of New World populations replaced or succeeded those endemic to Asia and western Beringia. Also, during the Last Glacial Maximum, mammoth populations do not appear to have suffered an overall decline in diversity, despite differing responses on either side of the Bering land bridge. In summary, the "Out-of-America" hypothesis holds that the dispersal of North American woolly mammoths into other parts of Holarctica created major phylogeographic structuring within Mammuthus primigenius populations, shaping the last phase of their evolutionary history before their demise.  相似文献   

12.
Chapela IH  Garbelotto M 《Mycologia》2004,96(4):730-741
Matsutake are commercially important ectomycorrhizal basidiomycetes in the genus Tricholoma. Despite their importance, the systematics of this species complex have remained elusive and little is known about their origin and biogeography. Using DNA analyses on a worldwide sample of matsutake, we present here the first comprehensive definition of natural groupings in this species complex. We infer patterns of migration and propose Eocene origins for the group in western North America by a transfer from an angiosperm-associated ancestor to an increasingly specialized conifer symbiont. From these origins, matsutake appear to have followed migratory routes parallel to those of coniferous hosts. Patterns of vicariance between eastern North America and eastern Asia are resolved and their origins are suggested to stem from migration through Beringia. Using an analysis of genetic dissimilarity and geographical distance, we reject both the possibility that migration into Europe and Asia occurred through Atlantic bridges and the connection between matsutake populations in the Mahgrebi Mountains and those from Europe. Instead, African and European matsutake appear to be the most recent ends of a westward expansion of the domain of these fungi from North America.  相似文献   

13.
The species richness of 109 amphi-Pacific disjunct genera was examined in eastern Asia and North America. Although the entire flora of eastern Asia contains approximately one-third more species than that of North America, the difference in species richness among disjunct taxa is less. When woody and herbaceous genera are considered separately, the former exhibit a strong diversity bias favouring eastern Asia whereas there is no significant difference in diversity between continents among herbaceous genera. This result is not due to habitat differences between woody and herbaceous genera, because the disjunct herbs inhabit primarily moist forests and woodlands. This result is also not related to relative phylogenetic advancement, even though older major lineages of plants tend to have a predominance of woody taxa. Woody genera are distributed in lower latitudes than herbaceous genera on both continents, and both woody and herbaceous genera are distributed in lower latitudes in eastern Asia than in North America. The North American temperate flora is primarily a relict of a flora form 7 more widespread throughout the Northern Hemisphere. Contemporary patterns of diversity suggest that the effects of climate changes in the late Tertiary were less severe in eastern Asia and promoted diversification, but were more severe in North America and may have caused widespread extinction. The difference in the effect of climate change on diversity in herbaceous and woody lineages reflects the different ecological relationships of species having these contrasting life forms. Clearly, the contemporary floras of eastern Asia and North America bear the imprint of history and emphasize the important interface between ecological relationships and evolutionary responses.  相似文献   

14.
Taxonomic diversity of vascular plants (ferns, gymnosperms and angiosperms) was compared between eastern Asia and North America. Eastern Asia has significantly higher species richness in all three classes but the difference was greatest in ferns and least in angiosperms. Differences in taxonomic treatments between the two continents are not likely contributors to these patterns. The relationship of regional to global species richness across the three plant classes suggested that diversity patterns were relatively homogeneous at three taxonomic levels. Thus, differences in species richness are established at the family level and are therefore relatively old. The previously noted fact that eastern Asia has a higher proportion of primitive taxa was shown by analyses both among and within plant classes. Diversity patterns across three taxonomic levels (i.e. family, genus and species) of the three classes may reflect the relative historical positions of the two continents (following continental drift) to the centre(s) of their origin, neighbouring land masses, differential speciation/extinction rates, and switches in dominance levels associated with climate change (including glaciation), as well as reproductive/dispersal mechanisms of the three plant classes.  相似文献   

15.
The timing of the earliest colonization of North America is debatable, but what is not at issue is the point of origin of the early colonists: Humans entered the continent from Beringia and then made their way south along or near the Pacific Coast and/or through a corridor that ran between the Cordilleran and Laurentide ice sheets in western North America. At some point, they abandoned their Arctic‐based tool complex for one more adapted to an entirely different environment. That new techno‐complex is termed “Clovis”; its dispersal allows us to examine, at a fine scale, how colonization processes played out across a vast continent that at the time had, at best, a very small resident population. Clovis has figured prominently in American archeology since the first Clovis points were identified in eastern New Mexico in the 1930s. However, the successful marriage of learning models grounded in evolutionary theory and modern analytical methods that began roughly a decade ago has begun to pay significant dividends in terms of what we know about the rapid spread of human groups across the last sizable landmass to witness human occupation.  相似文献   

16.
Aim To determine the origins of the host–parasite association between among yellow perch (Perca flavescens[Mitchill]) and the parasites Crepidostomum cooperi Hopkins, Proteocephalus pearsei La Rue and Urocleidus adspectus Beverly Burton. Of secondary interest are the parasites Bunodera luciopercae (Muller) and Proteocephalus percae (Muller) predictably associated with the Eurasian perch. Location The areas considered are the Holarctic, since the upper‐Cretaceous, and contemporary North America. Methods Published and new information from host and parasite phylogenies, palaeontology, palaeogeography and plate tectonics and host biology is incorporated to assess the origins of yellow perch and several of its parasites. This information is used to determine the origins for these host–parasite associations. Results Cladistic analysis suggests a Laurasian origin for Percidae and Perca, and that Perca is sister to the other genera in the family. Parasite phylogenies support a North American origin for the three species associated with yellow perch and a Laurasian origin for B. luciopercae. Proteocephalus pearsei and P. percae are not sister taxa. The fossil record for Perca dates to the Miocene in Europe and the Pleistocene in North America. North America and Europe were connected across the North Atlantic since at least the upper Cretaceous with separation complete by the Miocene. Europe was separated from Asia by the Obik Sea from the late Cretaceous until the Oligocene. Western cordillera orogeny and its accompanying high rates of water flow and Pleistocene glaciation represent barriers to Perca dispersal. Main conclusions The origin of Perca in North America dates at least to the late Oligocene when North America and Europe were connected across the North Atlantic and Europe and Asia were separate landmasses, and does not result from Pleistocene dispersal across Beringia from Asia. The present disjunction of Perca species in North America and Europe is due to the vicariant separation of North America and Europe. Based on the available information, yellow perch and its parasites have a North America origin. The association between yellow perch and the parasites in all cases is a consequence of host switching from other sympatric host species in North America and is not explained by co‐speciation. Even the association between the host‐specific Urocleidus adspectus and yellow perch originated with a host switch and is not due to co‐speciation. The basis for this host switching is geographical and ecological sympatry, especially shared feeding habits, with other North American fish hosts.  相似文献   

17.
Until recently, the settlement of the Americas seemed largely divorced from the out‐of‐Africa dispersal of anatomically modern humans, which began at least 50,000 years ago. Native Americans were thought to represent a small subset of the Eurasian population that migrated to the Western Hemisphere less than 15,000 years ago. Archeological discoveries since 2000 reveal, however, that Homo sapiens occupied the high‐latitude region between Northeast Asia and northwest North America (that is, Beringia) before 30,000 years ago and the Last Glacial Maximum (LGM). The settlement of Beringia now appears to have been part of modern human dispersal in northern Eurasia. A 2007 model, the Beringian Standstill Hypothesis, which is based on analysis of mitochondrial DNA (mtDNA) in living people, derives Native Americans from a population that occupied Beringia during the LGM. The model suggests a parallel between ancestral Native Americans and modern human populations that retreated to refugia in other parts of the world during the arid LGM. It is supported by evidence of comparatively mild climates and rich biota in south‐central Beringia at this time (30,000‐15,000 years ago). These and other developments suggest that the settlement of the Americas may be integrated with the global dispersal of modern humans.  相似文献   

18.
Zoë Lindo 《Ecography》2020,43(9):1364-1372
Rare, long-distance dispersal events are a key process in generating and maintaining patterns in biological diversity and species distributions across space and time. The 9.0 magnitude earthquake that struck the eastern coast of Japan in 2011, and the subsequent 38 m high tsunami washed large amounts of shoreline debris into the Pacific Ocean that led to a large-scale biological rafting event carrying nearly 300 marine species to the western shores of North America. Whether oceanic, trans-Pacific dispersal via rafting generates long distance dispersal events for small, flightless, terrestrial species is unknown. By sampling beach debris associated with known hot-spots of tsunami debris along the north and east shores of Graham Island, Haida Gwaii, Canada, I document significantly dissimilar invertebrate communities associated with tide-line beach debris and the occurrence of several putative Japanese species of soil-dwelling mites (Acari: Oribatida). Previous explanations of Haida Gwaii's unique flora and fauna have been attributed to a proximity to the Beringian land bridge and the accumulated evidence of near-offshore glacial refugia during the last glacial period. However, my research also suggests that stochastic, trans-Pacific rafting events contribute to the biodiversity and biogeography of soil communities on the west coast of North America.  相似文献   

19.
In order to develop better insights into biogeographic patterns of eastern Asian and North American disjunct plant genera, sequences of nuclear ribosomal DNA internal transcribed spacer (nr DNA ITS) region were used to estimate interspecific relationships of Thuja L. (Cupressaceae) and infer its biogeography based on the phylogeny. According to the phylogenetic analysis, two clades were recognized. The first clade included Thuja plicata D. Don (western North America) and T. koraiensis Nakai (northeastern Asia), and the second one contained T. occidentalis (Gord.) Carr. (Japan). The ancestral area of Thuja was inferred to be eastern Asia, and two dispersal events were responsible for the modern distribution of Thuja in North America. Both the North Atlantic land bridge and Bering land bridge were possible routes for the migration of ancestral populations to North America.  相似文献   

20.
Hadrosaurids were the most derived ornithopods and amongst the most diverse herbivore dinosaurs during the Late Cretaceous of Europe, Asia, and the two Americas. Here, their biogeographical history is reconstructed using dispersal‐vicariance analysis (DIVA). The results showed that Hadrosauridae originated in North America and soon after dispersed to Asia no later than the Late Santonian. The most recent common ancestor of Saurolophidae (= Saurolophinae + Lambeosaurinae) is inferred to have been widespread in North America and Asia. The split between saurolophines and lambeosaurines occurred in response to vicariance no later than the Late Santonian: the former clade originated in North America, whereas the latter did so in Asia. Saurolophine biogeographical history included a minimum of five dispersal events followed by vicariance. Four of these dispersals were inferred to have occurred from North America to Asia during the Campanian and Early Maastrichtian, whereas a fifth event represented a southward dispersal from North to South America no later than the Late Campanian. The historical biogeography of lambeosaurines was characterized by an early evolution in Asia, with a Campanian dispersal to the European archipelago followed by vicariance. Reconstruction of the ancestral areas for the deepest nodes uniting the more derived lambeosaurines clades (‘hypacrosaurs’, ‘corythosaurs’, and ‘parasaurolophs’) is ambiguous. The split between North American and Asian clades of ‘hypacrosaurs’ and ‘parasaurolophs’ occurred in response to vicariance during the Campanian. The evolutionary history of North American ‘hypacrosaurs’ and ‘parasaurolophs’ was characterized by duplication events. The latter also characterized the Late Campanian ‘corythosaurs’, which remained restricted to North America. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 503–525.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号