首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Testes of 15-day-old rats preincubated and incubated during different times with various doses of FSH (0.2; 2.0 and 20.0 mU/ml) in Krebs-Ringer bicarbonate (KRb) buffer increase the uptake of [14C] methylaminoisobutyric acid and [14C] aminoisobutyric acid. The basal and FSH stimulated amino acid transport occurs at absolute lower levels when the protein or glycoprotein synthesis is inhibited by cycloheximide (350 mumol/l) or tunicamycin (12 mumol/l) or when the microtubules are depolymerized with colchicine (1.2 mumol/l). However, the proportional increase of amino acid transport produced by FSH was maintained. The blockage of the voltage-dependent Ca++ channels with verapamil or the competitive inhibition of the bivalent ion channels by Co++ or Ni++ nullified the stimulatory action of FSH on the amino acid transport. Also quinine, that blocks the ATP dependent K+ channels, abolished the FSH action. It was concluded that in immature rat testes FSH stimulates amino acid transport through a mechanism involving voltage-dependent Ca++ channels and ATP-sensitive K+ channel.  相似文献   

2.
The purpose of this study was to investigate the involvement of calcium in K+ currents and its effects on amino acid accumulation and on the membrane potential regulated by tri-iodo-L-thyronine (T3) in Sertoli cells. Immature rat testes were pre-incubated for 30 min in Krebs-Ringer bicarbonate buffer and incubated for 60 min in the presence of [14C]methylaminoisobutyric acid with and without T3 or T4 (dose-response curve). Specific channel blockers or chelating agents were added at different concentrations during pre-incubation and incubation periods to study the basal amino acid accumulation and a selected concentration of each drug was chosen to analyze the influence on the stimulatory hormone action. All amino acid accumulation experiments were carried out in a Dubnoff metabolic incubator at 32 degrees C, pH 7.4 and gassed with O2:CO2 (95:5; v/v). Seminiferous tubules from immature Sertoli cell-enriched testes were used for the electrophysiology experiments. Intracellular recording of the Sertoli cells was carried out in a chamber perfused with KRb with/without T3, T4 or blockers and the membrane potential was monitored. We found that T3 and T4 stimulated alpha-[1-14C] methylaminoisobutyric acid accumulation in immature rat testes and induced a membrane hyperpolarization in Sertoli cells. The action of T3 on amino acid accumulation and on the hyperpolarizing effect was inhibited by the K(+)-ATP channel blocker tolbutamide as well as the voltage-dependent Ca2+ channel blocker verapamil. These results clearly demonstrate for the first time the existence of an ionic mechanism related to Ca2+ and K+ fluxes in the rapid, nongenomic action of T3.  相似文献   

3.
4.
The stimulatory effects of follicle-stimulating hormone (FSH), insulin, and insulin-like growth factor I (IGF-I) on lactate production and hexose uptake by Sertoli cells from immature rats were studied. The time-courses and the maximal stimulatory effects of FSH, insulin, and IGF-I on lactate production were virtually identical. When Sertoli cells were incubated in the presence of FSH in combination with insulin or IGF-I (submaximal doses), additive but no pronounced synergistic effects were observed. The stimulatory effects of FSH and insulin were not dependent on the presence of extracellular calcium. 2-Deoxy-D-glucose (2-DOG), an analogue of D-glucose, was used to investigate the hexose transport system of Sertoli cells. Uptake of 2-DOG was linear in time and virtually all of the intracellular 2-DOG was phosphorylated up to 30 min of incubation; 2-DOG uptake was inhibited by cytochalasin B, but not by cytochalasin E. D-glucose, but not D-galactose, appeared to be an effective competitor of 2-DOG uptake. The Km of 2-DOG uptake was not influenced by FSH, insulin, and IGF-I. FSH had no effect on the Vmax of 2-DOG uptake, whereas insulin and IGF-I caused a 30% stimulation of the Vmax. It is concluded that FSH, insulin, and IGF-I stimulate lactate production by cultured Sertoli cells, but that only insulin and IGF-I stimulate hexose transport. The insulin-like effect of FSH on Sertoli cells may principally involve stimulation of glycolytic enzyme activities.  相似文献   

5.
FSH mediates its testicular actions via a specific Sertoli cell G protein-coupled receptor. We created a novel transgenic model to investigate a mutant human FSH receptor (FSHR(+)) containing a single amino acid substitution (Asp567Gly) equivalent to activating mutations in related glycoprotein hormone receptors. To examine the ligand-independent gonadal actions of FSHR(+), the rat androgen-binding protein gene promoter was used to direct FSHR(+) transgene expression to Sertoli cells of gonadotropin-deficient hypogonadal (hpg) mice. Both normal and hpg mouse testes expressed FSHR(+) mRNA. Testis weights of transgenic FSHR(+) hpg mice were increased approximately 2-fold relative to hpg controls (P < 0.02) and contained mature Sertoli cells and postmeiotic germ cells absent in controls, revealing FSHR(+)-initiated autonomous FSH-like testicular activity. Isolated transgenic Sertoli cells had significantly higher basal ( approximately 2-fold) and FSH-stimulated ( approximately 50%) cAMP levels compared with controls, demonstrating constitutive signaling and cell-surface expression of FSHR(+), respectively. Transgenic FSHR(+) also elevated testosterone production in hpg testes, in the absence of circulating LH (or FSH), and it was not expressed functionally on steroidogenic cells, suggesting a paracrine effect mediated by Sertoli cells. The FSHR(+) response was additive with a maximal testosterone dose on hpg testicular development, demonstrating FSHR(+) activity independent of androgen-specific actions. The FSHR(+) response was male specific as ovarian expression of FSHR(+) had no effect on hpg ovary size. These findings reveal transgenic FSHR(+) stimulated a constitutive FSH-like Sertoli cell response in gonadotropin-deficient testes, and pathways that induced LH-independent testicular steroidogenesis. This novel transgenic paradigm provides a unique approach to investigate the in vivo actions of mutated activating gonadotropin receptors.  相似文献   

6.
The purpose of this study was to investigate the effect of T3 on amino acid accumulation and on the membrane potential of Sertoli cells of immature rat testes. Testes of pre-pubertal and pubertal rats were pre-incubated (30 min) in Krebs-Ringer bicarbonate buffer and incubated in the presence of [14C]methylaminoisobutyric acid with and without T3 for 15, 45 and 60 min. The hormone (10(-6) M and 10(-7) M) significantly stimulated amino acid accumulation in 6 and 13-day old rat testes but did not have any effect in neonatal and pubertal animals. T3 produced a dose-dependent hyperpolarizing effect at concentrations of 10(-6) M, 10(-5) M, 2 x 10(-5) M and 10(-4) M. We conclude that T3 induces a membrane hyperpolarization in Sertoli cells and stimulates amino acid accumulation in immature rat testes, demonstrating that the hormone has a rapid plasma membrane action.  相似文献   

7.
Low concentration (25 mM) of sodium in the incubation medium produced a decrease in the amino acid uptake by the testis tissue as well as a reduction in the response to FSH. In this experimental condition, the basal protein synthesis and the stimulatory effect of FSH was not modified. The subcutaneous administration of testosterone to 15 day old rats increased the protein synthesis in the testis without any modification in the amino acid uptake. The addition of DBcAMP (1 mM) or glucose (14 mM) to the incubation medium increased the protein synthesis in the testes of immature (12 day-old) or prepubertal (32 day-old) rats respectively. The amino acid uptake was not modified. In immature rat testes, with protein synthesis completely inhibited by cycloheximide, the restoration of the sodium concentration in the incubation medium to normal levels produced an increase in amino acid uptake. The results above seem to indicate that protein synthesis and amino acid uptake in rat testes tissue can be regulated, at least partially, by different factors.  相似文献   

8.
The aim of the present study was to determine whether exogenous radioactive GABA and glutamate previously taken up by rat brain synaptosomes are released preferentially with respect to the endogenous unlabeled amino acids. Preferential release was monitored by comparing the specific radioactivity of the amino acids released to that present in synaptosomes at the beginning and at the end of the release period. The GABA released spontaneously or by depolarizing the synaptosomes with high K+ in the presence of Ca2+ had the same specific radio-activity as that present in synaptosomes before or after superfusion. Depolarization with veratridine or superfusion with OH-GABA caused a moderate increase (15–20%) in the specific radioactivity of the GABA released and a corresponding slight decrease in that of superfused synaptosomes. In conditions causing a supraadditive release of exogenous and endogenous GABA (see ref. 13), the specific radioactivity of the GABA released was increased 20–30%. The GABA with higher-than-average specific radioactivity is probably representative of the cytoplasmic pool of this amino acid. The glutamate released spontaneously had a specific radioactivity lower than that present in synaptosomes at the start of superfusion, and also the specific radioactivity in superfused synaptosomes was lower than at the start of superfusion. The glutamate released by aspartate (by heteroexchange), by veratridine, or by high K+ had a specific radioactivity higher than that of the amino acid released spontaneously, similar to that present in synaptosomes at the start of superfusion, and higher than that found in superfused synaptosomes. These findings suggest that exogenous radioactive glutamate is released preferentially with respect to the endogenous amino acid and to the glutamate synthesized from glucose during the superfusion period.  相似文献   

9.
The direct effect of LH and FSH on cyclic AMP levels in specific cell types, isolated from the rat testes, was investigated in vitro. LH significantly stimulated cyclic AMP production in isolated interstitial cells and had only a slight effect on the isolated germ cells. FSH significantly stimulated cyclic AMP production in isolated seminiferous tubules, organ cultures of testes explants, and isolated Sertoli cells, with only a small response elicited in the germ cells. FSH had no effect on the cyclic AMP levels in interstitial cells and either freshly isolated or cultured peritubular cells. These data indicate that the Sertoli cells and interstitial cells are the main cell types in the testes which respond to FSH and LH respectively with increased cyclic AMP production. A possible slight effect of either hormone on the cyclic AMP level in the germ cells has not be ruled out.  相似文献   

10.
Data from several experimental approaches strongly suggest that Sertoli cells exert a paracrine control of the two main testicular functions, androgen secretion and spermatogenesis. Further evidence supporting this role of Sertoli cells was obtained by coculture of Sertoli cells with other testicular cells. Coculture of pig or rat Sertoli cells with pig Leydig cells produces an increase in the hCG receptor number and an increase in the steroidogenic activity of Leydig cells. Pretreatment with FSH further increases the values of these two parameters. These biochemical changes were associated with ultrastructural changes in Leydig cells. The effects of Sertoli cells on Leydig cells depend upon the ratio of the two cells and on the substrate in which the cells are cultured. Moreover, Leydig cells produce an increase in the FSH receptor number and in the FSH stimulation of plasminogen activator production by Sertoli cells. Coculture of rat or pig Sertoli cells with rat germ cells, induces an increase in the RNA and DNA biosynthetic activities of germ cells. Most of the stimulatory effects seemed to be mediated by diffusible factors, secreted by Sertoli cells, but full expression of the stimulatory action was observed when germ cells were in contact with other cells. In this coculture system, a fraction of rat germ cells containing mainly mature forms of spermatocytes inhibited rat Sertoli cell RNA and DNA synthesis, but had no effect on pig Sertoli cells. On the contrary, a fraction of rat germ cells richer in spermatogonias and preleptotene spermatocytes, stimulated rat Sertoli cell DNA synthesis but was without effect on pig Sertoli cells. These results clearly show that the stimulatory effects of Sertoli cells on Leydig and on germ cells which are not species specific are mediated mainly by diffusible factors, the secretion of which is regulates by FSH.  相似文献   

11.
Postnatal development and function of testicular Sertoli cells are regulated primarily by FSH. During this early period of development, estrogens play a role in proliferation of somatic cells, which contributes significantly to testicular development. Growth factors like epidermal growth factor (EGF) are produced in the testis and play a role in regulation of estradiol production and male fertility. Although these divergent factors modulate gonadal function, little is known about their mechanism of action in Sertoli cells. The present study investigates the intracellular events that take place down-stream of FSH and EGF receptors in Sertoli cells isolated from immature (10-d-old) rats, and examines which intracellular signals may be involved in their effects on aromatase activity and estradiol production in immature rat Sertoli cells. Primary cultures of rat Sertoli cells were treated with FSH in combination with EGF and signaling pathway-specific inhibitors. Levels of estradiol production, aromatase mRNA (Cyp19a1), and aromatase protein (CYP19A1) were determined. Western blot analysis was performed to determine the effects of FSH and EGF on levels of activated (phosphorylated) AKT1 and p42 ERK2 and p44 ERK1, also named MAPK1 and MAPK3, respectively. The stimulatory actions of FSH on aromatase mRNA, aromatase protein, and estradiol production were blocked by inhibition of the phosphatidylinositol 3-kinase/AKT1 signaling pathway. In contrast, inhibition of ERK signaling augmented the stimulatory effects of FSH on estradiol production, aromatase mRNA, and protein levels. Furthermore, EGF inhibited the expression of aromatase mRNA and protein in response to FSH, and these inhibitory effects of EGF were critically dependent on the activation of the ERK signaling pathway. We conclude that an active phosphatidylinositol 3-kinase /AKT signaling pathway is required for the stimulatory actions of FSH, whereas an active ERK/MAPK pathway inhibits estradiol production and aromatase expression in immature Sertoli cells.  相似文献   

12.
Hormonal deprivation achieved by hypophysectomy or gonadotropin-releasing hormone (GnRH)-antagonist treatment of immature rats resulted in markedly lower testicular gamma-glutamyl transpeptidase (GGT) activity than in the testes of age-matched controls. When begun 15 days after hypophysectomy, follicle-stimulating hormone (FSH) treatment significantly increased testicular GGT above that in testes from hypophysectomized controls in a time- and dose-dependent manner. In contrast, testosterone propionate had only a small effect. Testicular GGT was higher in adult hypophysectomized rats treated with FSH from the time of surgery than in untreated hypophysectomized rats; testosterone propionate treatment had no effect. GGT activity in Sertoli cells isolated from GnRH antagonist-treated or hypophysectomized immature rats was also lower than in cells from control rats. FSH treatment from the day of hypophysectomy resulted in Sertoli cell GGT values equivalent to those from intact controls. These data indicate that FSH regulates GGT activity in rat testis and Sertoli cells.  相似文献   

13.
Depolarization of the liver cell membrane by metformin   总被引:5,自引:0,他引:5  
Metformin (1,1-dimethylbiguanide; MET) is used in the treatment of type 2 diabetes mellitus. MET's antihyperglycemic action depends at least in part on its inhibitory effect on hepatic gluconeogenesis. As to gluconeogenesis from amino acids (e.g. L-alanine), this is associated with an inhibition of L-alanine uptake into hepatocytes. Since this uptake is mediated by an electrogenic transport mechanism, the aim of the present study was to investigate whether MET has an influence on the liver cell membrane potential which might explain its inhibitory effect on L-alanine uptake. The experiments were performed in vivo in anesthetized rats and in vitro using superfused mouse liver slices with the conventional microelectrode technique. In vivo, MET (160 mg/kg intraperitoneally (i.p.)) significantly depolarized (dV) the liver cell membrane by 6 mV. MET (1 mmol/l) also depolarized the liver cell membrane in vitro (e.g. 15 min after start of superfusion: dV=8 mV). MET's effect was at least partly reversible. Glucagon (10(-7) mol/l), which hyperpolarized the liver cell membrane, abolished MET's effect. Further, the MET-induced depolarization was completely absent during superfusion with low Cl(-) ([Cl(-)]=27 mmol/l) medium, and significantly attenuated by the Cl(-) channel blocker NPPB (25 micromol/l). While MET's effect was only somewhat attenuated by blockade of the Na(+)/K(+)/2Cl(-) cotransporter or by superfusion with (HCO(-)(3)-free) HEPES buffer, the carboanhydrase blocker acetazolamide (1 mmol/l) or blockade of the HCO(-)(3)/Cl(-) exchanger by DIDS (100 micromol/l), which, however, also blocks Cl(-) channels, abolished its effect. The depolarization of the liver cell membrane by MET was unaffected by a blockade of K(+) channels with Ba(2+), a blockade of the Na(+)/K(+) pump or superfusion with low Na(+) medium ([Na(+)]=26 mmol/l). According to these results, the MET-induced depolarization of the liver cell membrane could be due to an activation of the Cl(-)/HCO(-)(3) exchanger and thus depend on intracellular HCO(-)(3) formation. This activation could then lead to a disturbance of the equilibrium between intra- and extracellular Cl(-) and therefore to an enhanced Cl(-) efflux via Cl(-) channels. It is plausible that the depolarizing effect induced by MET is associated with its inhibitory effect on gluconeogenesis by inhibiting uptake of L-alanine and other amino acids into hepatocytes.  相似文献   

14.
In postnatal testes, follicle-stimulating hormone (FSH) acts on somatic Sertoli cells to activate gene expression directly via an intracellular signaling pathway composed of cAMP, cAMP-dependent protein kinase (PKA), and cAMP-response element-binding protein (CREB), and promotes germ cell development indirectly. Yet, the paracrine factors mediating the FSH effects to germ cells remained elusive. Here we show that nociceptin, known as a neuropeptide, is upregulated by FSH through cAMP/PKA/CREB pathway in Sertoli cells in murine testes. Chromatin immunoprecipitation from Sertoli cells shows that CREB phosphorylated at Ser133 associates with prepronociceptin gene encoding nociceptin. Analyses with Sertoli cells and testes demonstrates that both prepronociceptin mRNA and the nociceptin peptide are induced after FSH signaling is activated. In addition, the nociceptin peptide is induced in testes after 9days post partum following FSH surge. Thus, our findings may identify nociceptin as a novel paracrine mediator of the FSH effects in the regulation of spermatogenesis.  相似文献   

15.
16.
The transition from mitosis to meiosis is unique to germ cells. In murine embryonic ovaries and juvenile testes, retinoic acid (RA) induces meiosis via the stimulated by retinoic acid gene 8 (Stra8), but its molecular pathway requires elucidation. We present genetic evidence in vivo and in vitro that neuregulins (NRGs) are essential for the proliferation of spermatogonia and the initiation of meiosis. Tamoxifen (TAM) was injected into 14-day post-partum (dpp) Sertoli cell-specific conditional Nrg1(Ser-/-) mutant mice. TAM induced testis degeneration, suppressed BrdU incorporation into spermatogonia and pre-leptotene primary spermatocytes, and decreased and increased the number of STRA8-positive and TUNEL-positive cells, respectively. In testicular organ cultures from 5-6 dpp wild-type mice and cultures of their re-aggregated spermatogonia and Sertoli cells, FSH, RA [all-trans-retinoic acid (ATRA), AM580, 9-cis-RA] and NRG1 promoted spermatogonial proliferation and meiotic initiation. However, TAM treatment of testicular organ cultures from the Nrg1(Ser-/-) mutants suppressed spermatogonial proliferation and meiotic initiation that was promoted by FSH or AM580. In re-aggregated cultures of purified spermatogonia, NRG1, NRG3, ATRA and 9-cis-RA promoted their proliferation and meiotic initiation, but neither AM580 nor FSH did. In addition, FSH, RAs and NRG1 promoted Nrg1 and Nrg3 mRNA expression in Sertoli cells. These results indicate that in juvenile testes RA and FSH induced meiosis indirectly through Sertoli cells when NRG1 and NRG3 were upregulated, as NRG1 amplified itself and NRG3. The amplified NRG1 and NRG3 directly induced meiosis in spermatogonia. In addition, ATRA and 9-cis-RA activated spermatogonia directly and promoted their proliferation and eventually meiotic initiation.  相似文献   

17.
Summary In vivo administration of follicle-stimulating hormone causes the increase of the in vitro incorporation of D-[1-3H] glucose, D-[14C-(U)] glucosamine or D-[2-3H] mannose into glycoproteins of normal or Sertoli cell enriched testes of immature rats. This effect is blocked by preincubation of the testes with tunicamycin.Abbreviations FSH follicle stimulating hormone - KRB Krebs Ringer bicarbonate buffer - TCA trichloroacetic acid - SCE testes Sertoli cell enriched testes  相似文献   

18.
Aromatization of testosterone by cultured Sertoli cells isolated from immature rats was stimulated more than 7-fold by follicle stimulating hormone (FSH) or dcAMP. The effects of FSH and dcAMP could be partly inhibited by epidermal growth factor (EGF) in a dose-dependent manner (ID500.5 nM). The phorbol ester 4 beta-phorbol-12-myristate-13-acetate (PMA) could also inhibit aromatase activity in a fashion similar to EGF. When 3 mM EGTA was present in the culture medium, the inhibitory effect of EGF was abolished but the stimulatory effect of FSH or dcAMP was magnified. These results suggest that EGF exerts a negative control on aromatase via calcium and protein kinase C. The abolishment of the inhibitory effect of EGF and the enhancement of the stimulatory effect of FSH or dcAMP by a calcium deficiency may be an indication that growth factors produced by Sertoli cells negatively controls FSH-induced responses in an autocrine fashion.  相似文献   

19.
The effects of testosterone administration on testicular inhibin content and histology were studied in bilaterally cryptorchid rats, in which a marked decrease in testicular inhibin content had been observed. Mature male Wistar rats weighing approximately 300 g were made bilaterally cryptorchid by placing the testes in the abdominal cavity. Testosterone in oil, 0.1, 1.0 or 10 mg, was given i.m. each week. Testicular inhibin and testosterone content, histology and plasma LH, FSH and testosterone were studied 2 weeks later. Abnormally decreased testicular inhibin in cryptorchidism was restored toward normal by testosterone in a dose dependent manner in 2 weeks after surgery. Sertoli cell structure also recovered toward normal with increasing amount of testosterone. Decreased testicular testosterone content and Leydig cell atrophy were observed with suppressed plasma LH and FSH after testosterone. These results showed that the increased plasma concentration of testosterone had a stimulatory effect on the Sertoli cell function in cryptorchidism, in which compensated Leydig cell failure was demonstrated.  相似文献   

20.
The regulating effect of follicle-stimulating hormone (FSH) on Leydig cell function was studied using a model of immature porcine Leydig and Sertoli cells cultured in a hormone supplemented defined medium. FSH pretreatment for 2 days of Leydig cells cultured alone was with no effect. FSH pretreatment of Leydig cells cocultured with Sertoli cells increases Leydig cell activity in an FSH dose-dependent manner with a maximal effect observed at 50 ng/ml porcine FSH (pFSH). Leydig cells cultured for 2 days in conditioned medium (CM) by FSH stimulated (FSH-CM) Sertoli cells, as compared to CM by unstimulated (control) (C-CM) Sertoli cells show an increase of their activity with a maximal effect observed at 50 ng/ml pFSH. Leydig cells cultured in CM as compared to non CM, show a marked development of organelles (smooth endoplasmic reticulum and mitochondria) involved in the steroidogenic activity. The activity of FSH-CM as compared to C-CM on Leydig cell function was non dialyzable and trypsin sensitive. These data suggest that Sertoli cells exert a regulatory action on Leydig cell steroidogenic activity via FSH dependent secreted proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号