首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vegetation within an ombrotrophic mire expanse in SE Norway is studied in detail. Percentage cover of 45 species in 436 sample plots (16 ×16 cm), dispersed on 26 transects, are recorded. In addition, species abundance in 6976 subplots (4×4 cm) are recorded. 14 variables are recorded for each of the sample plots, while only distance to the water-table is estimated for the subplots. Spatial co-ordinates are supplied for all sample- and subplots. DCA ordination of a data-set consisting of 412 sample plots reveals two ecologically interpretable vegetational gradients: the hummock-hollow gradient (DCA 1), and a gradient associated with the peat-production of the bottom layer (DCA 2). Passive DCA of subplots is used to get an impression of within sample plot heterogeneity, and shows that the fine-scale compositional turnover may be considerable. Partitioning of the variation in species abundance data is done by use of (partial) CCA. The fraction of unexplained variation is rather large for all the tested data-sets, but within the total variation explained, both distance to the water-table and spatial structure explain large parts.  相似文献   

2.
Abstract. Vegetation science has relied on untested paradigms relating to the shape of species response curves along environmental gradients. To advance in this field, we used the HOF approach to model response curves for 112 plant species along six environmental gradients and three ecoclines (as represented by DCA ordination axes) in SE Norwegian swamp forests. Response curve properties were summarized in three binary response variables: (1) model unimodal or monotonous (determinate) vs. indeterminate; (2) for determinate models, unimodal vs. monotonous and (3) for unimodal models, skewed vs. symmetric. We used logistic regression to test the influence, singly and jointly, of seven predictor variables on each of three response variables. Predictor variables included gradient type (environmental or ecocline) and length (compositional turnover); species category (vascular plant, moss, Sphagnum or hepatic), species frequency and richness, tolerance (the fraction of the gradient along which the species occurs) and position of species along each gradient. The probability for fitting a determinate model increased as the main occurrence of species approached gradient extremes and with increasing species tolerance and frequency and gradient length. Appearance of unimodal models was favoured by low species tolerance and disfavoured by closeness of species to gradient extremes. Appearance of skewed models was weakly related to predictors but was slightly favoured by species optima near gradient extremes. Contrary to the results of previous studies, species category, gradient type and variation in species richness along gradients did not contribute independently to model prediction. The overall best predictors of response curve shape were position along the gradient (relative to extremes) and tolerance; the latter also expressing gradient length in units of compositional turnover. This helps predicting species responses to gradients from gradient specific species properties. The low proportion of skewed response curves and the large variation of species response curves along all gradients indicate that skewed response curves is a smaller problem for the performance of ordination methods than often claimed. We find no evidence that DCA ordination increases the unimodality, or symmetry, of species response curves more than expected from the higher compositional turnover along ordination axes. Thus ordination axes may be appropriate proxies for ecoclines, applicable for use in species response modelling.  相似文献   

3.
Abundances of eleven Sphagnum species in 800 sample plots are used to investigate the effect of DCA rescaling on Levins' measure of niche breadth relative to three partitions of the water-table gradient in a boreal Norwegian mire: (1) sample plots classified into 15 categories, each spanning an interval of 2 cm vertical extent, (2) as (1), but sequence of categories rescaled by DCA and sample plots reorganized into 15 categories with uniform beta diversity, and (3), sample plots ordinated by DCA and classified into 15 categories with uniform beta diversity by subdivision of an ordination axis highly correlated with median water-table. Habitat niche breadth is shown to be dependent on four issues (in order of supposedly decreasing importance): (1) scale, (2) noise level of data, (3) homogeneity of individual samples, and (4), weighting function. Six problems relevant to interpretation of measurements of niche breadth are discussed: (1) range of measures, (2) spacing of categories, (3) scale, (4) choice of gradients, (5) number of samples, and (6), comparability of studies. For measures of habitat niche breadth to be biologically meaningful, four conditions have to be satisfied: (1) the gradients studied have important impact on the studied species, (2) sampling is adequate, (3) scaling of gradients is in compositional turnover, and (4), comparability is demonstrated prior to comparison with other studies. Revisions of current methods are proposed. The role of DCA in niche studies is particularly emphasized.  相似文献   

4.
Kees Kersting 《Hydrobiologia》1983,107(2):165-168
In a polder ditch with a water depth of 50 cm, oxygen and temperature were measured continuously during 24 hours at 10 cm above the bottom and 10 cm below the surface. Two examples are given in which the diel oxygen curve of the lower electrode was bimodal. The curve of the upper electrode was unimodal in both cases. The occurrence of the bimodal curve could be explained by the turnover of the stratified water column after the surface started to cool in the late afternoon.  相似文献   

5.
Abstract. A new measure of compositional turnover rate at any gradient point is proposed. The absolute values of the derivatives of estimated species response curves are used to estimate the instantaneous rate of change of the community. The total gradient length can be found by integrating the instantaneous turnover rates over the gradient span. Both the instantaneous rate and total gradient length have been known under the name of beta diversity. Our method is elaborated for the Gaussian response function. It is compared to Hill's SD measure, much used for estimating the gradient length in connection of Detrended Correspondence Analysis with nonlinear rescaling for axes. The turnover rate along a canopy cover gradient in forest vegetation in Finland was used as an example. Forest site type and stand age were used as subsidiary gradients. The two ways to compute Hill's scaling gave very different results and were not comparable with the new method. The turnover rate was dependent on the gradient position. However, the turnover rate along the gradient of interest and its total length were dependent on the subsidiary gradients.  相似文献   

6.
唐国  胡雷  宋小艳  李香真  王长庭 《生态学报》2022,42(15):6250-6264
根系是草原生态系统中最重要的碳库之一,分析高寒草甸植物群落生物量和地下不同径级根系碳分配特征及根系的生长特征对降雨变化的响应,有利于了解全球变化背景下高寒草甸植物根系、土壤碳氮循环及其过程。采用微根管技术原位监测5种降雨处理下(增雨50%:1.5P、自然降雨:1.0P、减雨30%:0.7P、减雨50%:0.5P、减雨90%:0.1P)高寒草甸植物群落和根系属性(现存量、生产量、死亡量、根系寿命和周转速率)的变化特征,结果表明:(1)降雨变化对地上植物群落生物量无显著影响,但0.5P和0.1P显著增加禾本科生物量(P<0.05)。(2)总根系现存量在处理间无显著差异,但随着降雨量减少呈先增加后降低的趋势。土层间不同径级根系现存量差异显著,0-10 cm土层1.5P和0.7P1级根现存量显著增加,2级和3级根现存量显著降低;在10-20 cm土层,1.0P2级根系现存量显著高于其余处理(P<0.05)。(3)总根生产量与死亡量随降雨减少而降低,在0-10 cm土层,1.0P总根生产量和死亡量最高,0.1P显著降低了1级根生产量(P<0.05)。(4)0.1P显著增加10-20 cm土层1级根和总根寿命(P<0.05)。(5)根系周转随降雨量减少呈降低趋势,但无显著差异(P>0.05)。(6)结构方程模型进一步表明:根系现存量和生产量受土层和水分的直接影响,土层和养分对根系周转有负效应。综上所述,降雨量的变化并未显著改变地下总根系生物量,但少量降雨变化(0.7P、1.5P)会降低植物对2、3级根生物量的分配,投入更多资源以促进1级根的生长;而水分下降至轻度水分胁迫(0.1P),植物会减少地下各径级根系生物量的分配,保持低根系生物量消耗和低根系生长来维持其正常的生长状态,完成其正常的生态功能。  相似文献   

7.
Water movement in the soil-plant-atmosphere continuum (SPAC) has a significant effect on the biogeochemical process in wetlands. This study investigated the water movement in the SPAC in Poyang Lake wetland, which is a protected area with an important ecological function within the Yangtze River basin, under different water-level conditions by analyzing the responses of river, groundwater, soil and plants to precipitation using stable hydrogen and oxygen isotopes. The results show that the stable hydrogen and oxygen isotopic compositions (δ18O and δD) of soil water decrease with increasing depth due to the near surface evaporation. During the dry season the water-level in Poyang Lake is low, when it rains the influencing depth of precipitation and evaporation on soil water isotopic signatures was 20 cm below the ground surface. The rain water infiltrates into the soil, recharges groundwater and flows to the river. When the water-level in Poyang Lake is low, the Xiu River is recharged by the groundwater, which recharges the soil water by capillary rise. During the flood season, the water-level is high and the water in Poyang Lake reaches or covers the meadows, recharges the groundwater and soil water. In the meantime, the water in Poyang Lake can be recharged by rain water when it rains. During the dry season when it doesn’t rain, plants mainly use groundwater, but soil water is preferred and plants don’t use rainwater directly when it rains. When the lake water-level is extremely low, the plants in Poyang Lake wetland may suffer from water stress, which is harmful for plant growth.  相似文献   

8.
Boreal peatlands, which contain a large fraction of the world's soil organic carbon pool, may be significantly affected by changes in climate and land use, with attendant feedback to climate through changes in albedo, fluxes of energy or trace gases, and soil carbon storage. The response of peatlands to changing environmental conditions will probably be dictated in part by scale-dependent topographic heterogeneity, which is known to interact with hydrology, vegetation, nutrients, and emissions of trace gases. Because the bryophyte community can contribute the majority of aboveground production in bogs, we investigated how microscale topography affects the response of bryophyte species production and cover to warming (using overhead infrared lamps) and manipulations of water-table height within experimental mesocosms. We removed 27 intact peat monoliths (2.1-m2 surface area, 0.5-0.7 m depth) from a bog in northern Minnesota, USA, and subjected them to three warming and three water-table treatments in a fully crossed factorial design. Between 1994 and 1998, we determined annual production of the four dominant bryophyte taxa within three microtopographic zones (low, medium, and high relative to the water table). We also estimated species cover and calculated changes in topography and roughness of the bryophyte surface through time. Total production of all bryophytes, and production of the individual taxa Polytrichum strictum, Sphagnum magellanicum, and Sphagnum Section Acutifolia, were about 100% greater in low microtopographic zones than in high zones, and about 50% greater in low than in medium zones. Production of bryophytes increased along the gradient of increasing water-table heights, but in most years, total production of bryophytes was negatively correlated with height above the set water table only for the wettest water-table treatment. Although bryophyte production was unaffected by the warming treatments, the bryophyte surface flattened in proportion to the degree of warming. These results indicate that production of bryophytes is driven most strongly by the absolute and relative height of the bryophyte surface above the water table. Predicted changes in water-table height commensurate with changes in surface temperature may thus affect both production and superficial topography of bryophyte communities.  相似文献   

9.
On a global basis, peatlands are a major reserve of carbon (C). Hydrological changes can affect the decomposition processes in peatlands and in turn can alter their C balance. Since 1959, a groundwater extraction plant has generated a water-level gradient at our study site that has gradually changed part of the wet fen into a dry peatland forest. The average water-level drawdown of the gradient (from a pristine 9 cm to 26 cm in the dry end) is close to an estimate predicted by an increase in mean global temperature of 3°C. We studied the total microbial community of the aerobic surface peat in four locations along the gradient through phospholipid fatty acid and PCR-DGGE methods. Additionally, field measurements of soil respiration showed a threefold increase in the C-emission rate at the driest location compared with the wettest one, indicating enhanced decomposition. Also, both fungal and bacterial biomass increased in the drier locations. At the species level, the fungal community changed due to water-level drawdown whereas actinobacteria were less sensitive to drying. The majority of fungal sequences were similar to ectomycorrhizal (ECM) fungi, which dominated throughout the gradient. Our results indicate that ECM fungi might act as important facultative decomposers in organic-rich environments such as peatlands.  相似文献   

10.
The present two-part review aims to put the different phenomena that have been called "beta diversity" over the years into a common conceptual framework and to explain what each of them measures. The first part (Tuomisto 2010) discussed basic definitions of "beta diversity". Each arises from a different way of combining a definition of "diversity" with a definition of its alpha component and with a mathematical relationship between the alpha and gamma components. This second part assumes that an appropriate basic definition of a beta component (which may or may not be true beta diversity) has been chosen, and the focus here will be on how to quantify it for a given dataset. About twenty different approaches have been used for this purpose. It turns out that only two of these approaches accurately quantify the selected beta component: one does so for the entire dataset, and the other for two sampling units at a time. The other approaches actually quantify other phenomena, such as mean species turnover between sampling units, compositional gradient length (with or without reference to an external gradient), distinctness of a focal sampling unit, rate of species accumulation with increasing sampling effort, rate of compositional turnover along an external gradient, or the rate of decay in compositional similarity with increasing geographical distance. Although most of these phenomena can be expressed as a function of a beta component of diversity, they do not equal a beta component of diversity. Many of these derived variables are not even numerically correlated with the beta component on which they are based, which needs to be taken into account when interpreting the results. The effects of sampling decisions when results are extrapolated beyond the available data will also be discussed.  相似文献   

11.
Environmental heterogeneity is one of the most influential factors that create compositional variation among local communities. Greater compositional variation is expected when an environmental gradient encompasses the most severe conditions where species sorting is more likely to operate. However, evidence for stronger species sorting at severer environment has typically been obtained for less mobile organisms and tests are scarce for those with higher dispersal ability that allows individuals to sensitively respond to environmental stress. Here, with the dynamics of fish communities in a Japanese bay revealed by environmental DNA metabarcoding analyses as a model case, we tested the hypothesis that larger environmental heterogeneity caused by severe seasonal hypoxia (lower concentration of oxygen in bottom waters in summer) leads to larger variation of species composition among communities. During summer, fish species richness was lower in the bottom layer, suggesting the severity of the hypoxic bottom water. In contrast to the prediction, we found that although the environmental parameters of bottom and surface water was clearly distinct in summer, fish species composition was more similar between the two layers. Our null model analysis suggested that the higher compositional similarity during hypoxia season was not a result of the sampling effect reflecting differences in the alpha or gamma diversity. Furthermore, a shift in the species occurrence from bottom to surface layers was observed during hypoxia season, which was consistent across species, suggesting that the severe condition in the bottom adversely affected fish species irrespective of their identity. These results suggest that larger environmental heterogeneity does not necessarily lead to higher compositional variation once the environmental gradient encompasses extremely severe conditions. This is most likely because individual organisms actively avoided the severity quasi‐neutrally, which induced mass effect‐like dispersal and lead to the mixing of species composition across habitats. By showing counter evidence against the prevailing view, we provide novel insights into how species sorting by environment acts in heterogeneous and severe conditions.  相似文献   

12.
Direct gradient analysis was applied to the evergreen broad-leaved forest coenocline in the Tatera Forest Reserve, Japan. 10 quadrats of 0.1 -0.05 ha were laid out from 140 m to 560 m above sea level at intervals of 25–70 m. Gradient analysis revealed that distributions of many species terminated or started at ca. 400 m. Community similarity, calculated in Percentage Similarity (PS) and Community Coefficient (CC), changed abruptly below and above the 400 m contour, suggesting a change of vegetation structure at this altitude, which was also clear from population distributions. The spatial turnover rate of species along the altitudinal gradient was calculated in two ways: as the Average turnover rate along the whole range of the gradient, and as the Zone turnover rate at individual altitudes. The overall rates calculated for five categories of populations: DBH > 10 cm, DBH >3 cm, all woody species, herb-layer, and total vegetation, were- 0.0011 to- 0.0021 for PS, and - 0.0009 to- 0.0019 for CC. The calculated rates (PS basis) indicate that a 95% change in species composition is reached at 1120 to 620 m altitude. Similarly, the rates -0.0009 to - 0.0019 (CC) correspond to 1410 - 680 m. The altitudinal range expected here for a 95% change agrees with the actual elevation of forest zonation in northwestern Kyushu. The average rate of both PS and CC in the herb-layer population was 1.56 times higher than the rate in the woody species population, showing a more rapid change in herb-layer population than in the woody ones along the gradient. The Zone turnover rates were higher at the 370–440 m belt than those below and above the belt. This coincided with the interchanging pattern in population distributions and the abrupt change in similarity at about 400 m above sea level. This may be due to the change in environmental conditions such as physiography and air humidity. In the diversity measurements, the species density per 100 m2 showed a gradual increase in the DBH >3 cm population but a constant level in the DBH >10 cm population along the whole range of the forest coenocline studied, while index values of S(100) and Shannon's H showed decreasing trends in the same gradient with a few exceptionally high and low values.  相似文献   

13.
An instrument is described, which collects water from the benthic boundary layer in shallow waters with a maximum depth of 50 m. Four water samples of 71 each can be collected between 5 cm and 40 cm above the sediment. Handling is easy, and the sampling operation is short enough to allow repeated employment even on time-limited, routine investigations. First results show gradients in the organic matter and seston content of samples from the 5 to 35 cm above the sediment. The oxygen concentrations near the sea bottom decreased faster than those 3 m above, just below the summer pycnocline.  相似文献   

14.
Microbial manganese and sulfate reduction in Black Sea shelf sediments   总被引:1,自引:0,他引:1  
The microbial ecology of anaerobic carbon oxidation processes was investigated in Black Sea shelf sediments from mid-shelf with well-oxygenated bottom water to the oxic-anoxic chemocline at the shelf-break. At all stations, organic carbon (C(org)) oxidation rates were rapidly attenuated with depth in anoxically incubated sediment. Dissimilatory Mn reduction was the most important terminal electron-accepting process in the active surface layer to a depth of approximately 1 cm, while SO(4)(2-) reduction accounted for the entire C(org) oxidation below. Manganese reduction was supported by moderately high Mn oxide concentrations. A contribution from microbial Fe reduction could not be discerned, and the process was not stimulated by addition of ferrihydrite. Manganese reduction resulted in carbonate precipitation, which complicated the quantification of C(org) oxidation rates. The relative contribution of Mn reduction to C(org) oxidation in the anaerobic incubations was 25 to 73% at the stations with oxic bottom water. In situ, where Mn reduction must compete with oxygen respiration, the contribution of the process will vary in response to fluctuations in bottom water oxygen concentrations. Total bacterial numbers as well as the detection frequency of bacteria with fluorescent in situ hybridization scaled to the mineralization rates. Most-probable-number enumerations yielded up to 10(5) cells of acetate-oxidizing Mn-reducing bacteria (MnRB) cm(-3), while counts of Fe reducers were <10(2) cm(-3). At two stations, organisms affiliated with Arcobacter were the only types identified from 16S rRNA clone libraries from the highest positive MPN dilutions for MnRB. At the third station, a clone type affiliated with Pelobacter was also observed. Our results delineate a niche for dissimilatory Mn-reducing bacteria in sediments with Mn oxide concentrations greater than approximately 10 micromol cm(-3) and indicate that bacteria that are specialized in Mn reduction, rather than known Mn and Fe reducers, are important in this niche.  相似文献   

15.
人工水库修建引发的差异性水文节律是决定消落区植被群落格局的主要因素,高强度水淹环境中水淹胁迫是影响植被的重要因子而低强度水淹环境中物种竞争是影响植被的重要因子。为了探究差异性水淹环境中三峡水库消落区植物的水淹耐受能力及光资源竞争能力(植物株高)对植被群落分布格局的影响,对三峡水库典型消落区不同水淹强度下生长的植被进行了研究,结果表明:(1)典型消落区调查共发现有植物41种,其中高耐淹低竞争能力型植物4种,其生物量在所有物种生物量中的占比达70.99%,低耐淹高竞争能力型植物23种,其生物量占比为28.02%,低耐淹低竞争能力型植物14种,生物量占比不足1%,消落区内无高耐淹高竞争能力型植物物种分布;(2)高耐淹低竞争能力型植物在水淹强度大的消落区区域占优,低耐淹高竞争能力型植物在植物物种竞争压力大的消落区区域占据主导,低耐淹低竞争能力型植物在消落区中仅有零星分布;(3)消落区植被生物量格局随着高程增加呈现出先增加后减少的趋势。研究差异性水淹环境对三峡水库消落区植被分布的影响,可以为深入理解消落区植被分布格局的形成机制和大型水库消落区植被恢复与重建提供理论依据。  相似文献   

16.
Summary This study examined the water relations and growth responses of Uniola paniculata (sea oats) to (1) three watering regimes and (2) four controlled water-table depths. Uniola paniculata is frequently the dominant foredune grass along much of the southeastern Atlantic and Gulf coasts of the United States, but its distribution is limited in Louisiana. Throughout most of its range, U. paniculata tends to dominate and be well adapted to the most exposed areas of the dune where soil moisture is low. Dune elevations in Louisiana, however, rarely exceed 2 m, and as a result the depth to the water table is generally shallow. We hypothesized that if U. paniculata grows very near the water-table, as it may in Louisiana, it will display signs of water-logging stress. This study demonstrated that excessive soil moisture resulting from inundation or shallow water-table depth has a greater negative effect on plant growth than do low soil moisture conditions. Uniola paniculata's initial response to either drought or inundation was a reduction of leaf (stomatal) conductance and a concomitant decrease in leaf elongation. However, plants could recover from drought-induced leaf xylem pressures of less than-3.3 MPa, but prolonged inundation killed the plants. Waterlogging stress (manifested in significantly reduced leaf stomatal conductances and reduced biomass production) was observed in plants grown at 0.3 m above the water table. This stress was relieved, however, at an elevation of 0.9 m above the water table. As the elevation was increased from 0.9 to 2.7 m, there were no signs of drought stress nor a stimulation in growth due to lower soil moisture. We concluded that although U. paniculata's moisture-conserving traits adapt it well to the dune environment, this species can grow very well at an elevation of only 0.9 m above the water table. Field measurements of water-table depth in three Louisiana populations averaged about 1.3 m. Therefore, the observed limited distribution of U. paniculata along the Louisiana coast apparently cannot be explained by water-logging stress induced by the low dune elevations and the corresponding shallow water-table depth.  相似文献   

17.
A study quantifying the physiological threshhold at which Spartina alterniflora plants are able to tolerate the interactive effects of salinity and soil drying was conducted in a climate controlled greenhouse. The experiment consisted of two levels of salinity (3-5 ppt, L and 35-38 ppt, H) as well as four dynamic water levels: flooding (water level maintained 3-5 cm above the soil surface at high tide and 10 cm below the soil surface at low tide for entire study duration, F), 8-day drought (water level maintained at least 20 cm below the soil surface at high tide for 8 days then flooded, 8 days), 16-day drought (water level maintained at least 20 cm below the soil surface at high tide for 16 days then flooded, 16 days), and 24-day drought (water level maintained at least 20 cm below the soil surface at high tide for 24 days then flooded, 24 days). Plant gas exchange and growth responses were measured along with soil conditions of redox potential and water potential. Significant decreases were seen in plant gas exchange and growth in response to increases in salinity and soil drying. Survival was 100% for all flooded treatments while increased salinity combined with soil drying decreased survival to 86% in both low salt/24-day drought plants (LD24) and high salt/16-day drought plants (HD16). The lowest survival rate was seen in the high salt/24-day drought treatment (HD24) at 29%. Therefore, it appears that the critical time for recovery from the combined effects of increased salinity and soil drying may greatly diminish after two weeks from the onset of stress conditions. Consequently, if salinity continues to increase along the MRDP, marshes dominated by S. alterniflora may be more susceptible to short-term drought and likewise large-scale marsh browning.  相似文献   

18.
In an artificial Salix gordejevii Chang et Skv. plantation of the Horqin sandy land, we investigated vertical distribution (in 0–100 cm depth), biomass (FRD), fine root production (FRP), fine root length density (FRLD) and turnover of fine roots (<2 mm diameter) at three sites (dune top, midslope and bottom of dune) along leeward slopes. Meanwhile, the correlation between FRP and soil available resources was analyzed. Our results indicate that more than 65% of total fine root biomass is distributed in 0–40 cm depth, and the patterns are different at three sites. The mean monthly FRD ranges from 227 to 324 g·m?2, and they follows the order: dune top > midslope > bottom of dune. Ingrowth cores were harvested after 2, 3, 4, 5, 6 and 8 months of installation. At the first five sampling times, FRP and FRLD (0–40 cm) follows the same order with FRD along the topographical gradient, while FRP harvested after 8 months does not follow the same tendency, they are 348, 402 and 356 g·cm?2 in dune top, midslope and bottom of dune, respectively. Fine root turnover ranges from 1.04–1.92 year?1, and fine root turnover (20–40 cm) increases from dune top to bottom of dune along the topographical gradient. Correlation analysis between FRP and soil available resources indicates that only mean soil volumetric water content significantly correlates with annual FRP, which suggests that soil water content might be more crucial for shrub growth than fertility along the topographical gradient.  相似文献   

19.
A method was developed for studying local differences in ruminai fermentation. The developed sampler consisted of an acrylic glass container (460 cm3) with an aperture for digesta sampling, which could be opened and closed by the scaled “T”; rod. The scale was a reference for defined rumen layers: top, middle, 5 to 10 cm and 25 to 35 cm beneath the top of particles mat, respectively, and bottom 5 to 10 cm above the rumen floor. The repeatability of the method was proved in two rumen cannulated cows. Particle/fluid ratio, pH and sample amount were measured 2 to 21/2 h after morning feeding in four replicates each day (over 5 days), rumen layer and animal. No significant differences between replicates were observed. The coefficients of variation (CV) of the particle/fluid ratio varied between 8.7% and 13.6%. Top layer had higher CV than middle and bottom layer. CV of pH ranged between 0.59% and 1.27%. The developed method of sampling showed satisfactory repeatability for investigation of digesta properties and fermentation in different rumen layers.  相似文献   

20.
The life cycle and growth ofPotamogeton crispus L. were studied in a shallow pond, Ojaga-ike. With respect to the shoot elongation and seed and turion formations, the life cycle of this plant in the pond could be divided into following five stages: germination, inactive growth, active growth, reproductive and dormant stages. It was suggested that the plant showed these successive stages depending mainly upon water temperature. The turions germinated on the bottom in autumn when the water temperature fell below ca. 20 C. The plant showed hardly any growth during winter (December—early March) when the temperature was below 10 C. In the spring when the bottom water temperature rose to above 10 C (mid-March), the plant started to grow again and the shoot elongated rapidly at the rate of 4.2 cm day−1 until the shoot apex reached the pond surface in late April. Both the increment of node number and the internodal elongation were associated with this rapid shoot growth. On 10 May (last sampling date), the mean values of shoot length, internodal length and the number of nodes estimated for 10 predominant plants were 238.2±5.6 cm, 7.1±0.8 cm and 34.9±4.0 cm, respectively. The turion formation and flowering occurred during the period from mid-April to mid-May when the surface water temperature ranged 19 and 22 C. The dry weight of a plant reached the maximum mean value of 1180 mg on 10 May. At its peak biomass, an individual plant produced 1–10 turions (5.5 on average) of which the mean individual turion dry weight was 53.2 mg. The turion dry weight accounted for ca. 42% of the total plant biomass m−2 at that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号