首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The correlation analysis revealed a direct (within the range 80 to 120 mm Hg) further transforming into a reverse (within the range 121 to 160 mm Hg) dependence of the blood pressure depressor shifts on the initial mean arterial pressure in anaesthetised rats. Within the physiological range of arterial pressure (70 to 130 mm Hg) there is no difference in responses to nitro-glycerine from their initial values. The mechanisms of dependence of the systemic vascular responses on initial tone of arterial vessels, are discussed.  相似文献   

2.
The effects of externally applied pressure of 5-150 mm Hg on the haemodynamics of the leg of dog and man were investigated. The criteria used for the assessments included femoral arterial and venous blood flow as well as vascular hydraulic conductance. The results indicated that external pressure of 5 mm Hg results in a very small non-significant increase in the femoral arterial and venous flow. Higher external pressure of 15 mm Hg or more significantly reduces the femoral arterial and venous flows as well as the vascular conductance. It therefore seems that compression produced by bandaging in horizontal supine subjects has little or no haemodynamic value and may prove to be harmful unless carefully controlled.  相似文献   

3.
To investigate the influence of vasomotor tone and vessel compliance on pulmonary segmental vascular resistance, we determined the longitudinal distribution of vascular pressures in 15 isolated blood perfused lungs of newborn lambs. We measured pulmonary arterial and left atrial pressures and by micropuncture the pressures in 20- to 80-micron-diam subpleural arterioles and venules, both before and after paralyzing the vasculature with papaverine hydrochloride. In five lungs we also determined the microvascular pressure profile during reverse perfusion. In lungs with baseline vasomotor tone, approximately 32% of the total pressure drop was in arteries, approximately 32% in microvessels, and approximately 36% in veins. With elimination of vasomotor tone, arterial and venous resistances decreased to one-fifth and one-half of base-line values, respectively, indicating that vasomotor tone contributed mainly toward arterial resistance. During reverse perfusion, the pressure drop in veins was similar to that in arteries during forward perfusion, suggesting that the compliance of arteries and veins is comparable. We conclude that vascular tone and compliance are important factors that determine the distribution of segmental vascular resistance in lungs of the newborn.  相似文献   

4.
The performance of the Bentley BOS-5 pediatric oxygenator was evaluated on the basis of its response to maintain arterial pH between 7.35 and 7.45, arterial pO(2) between 100 and 200 mm Hg, and arterial pCO(2) between 35 and 45 mm Hg (Texas Heart Institute perfusion protocol). The oxygenator was found to be efficient at all flow rates employed; however, the pO(2) parameter could not be consistently maintained within protocol limits, but could be improved when a mixture of 5% carbon dioxide/95% oxygen was used for the duration of a case.  相似文献   

5.
The purpose of this project was to collate canine cardiopulmonary measurements from published and unpublished studies in our laboratory in 97 instrumented, unsedated, normovolemic dogs. Body weight; arterial and mixed-venous pH and blood gases; mean arterial, pulmonary arterial, pulmonary artery occlusion, and central venous blood pressures; cardiac output; heart rate; hemoglobin; and core temperature were measured. Body surface area; bicarbonate concentration; base deficit; cardiac index; stroke volume index, systemic and pulmonary vascular resistance indices; left and right cardiac work indices; alveolar partial pressure of oxygen (pO2) ; alveolar-arterial pO2 gradient (A-apO2); arterial, mixed-venous, and pulmonary capillary oxygen content; oxygen delivery; oxygen consumption; oxygen extraction; venous admixture; arterial and mixed-venous blood CO2 contents; and CO2 production were calculated. In the 97 normal, resting dogs, mean arterial and mixed-venous pH were 7.38 and 7.36, respectively; partial pressure of carbon dioxide (pCO2), 40.2 and 44.1 mm Hg, respectively; base-deficit, -2.1 and -1.9 mEq/liter, respectively; pO2, 99.5 and 49.3 mm Hg, respectively; oxygen content, 17.8 and 14.2 ml/dl, respectively; A-a pO2 was 6.3 mm Hg; and venous admixture was 3.6%. The mean arterial blood pressure (ABPm), mean pulmonary arterial blood pressure (PAPm), pulmonary artery occlusion pressure (PAOP) were 103, 14, and 5.5 mm Hg, respectively; heart rate was 87 beats/min; cardiac index (CI) was 4.42 liters/min/m2; systemic and pulmonary vascular resistances were 1931 and 194 dynes.sec.cm-5, respectively; oxygen delivery, consumption and extraction were 790 and 164 ml/min/m2 and 20.5%, respectively. This study represents a collation of cardiopulmonary values obtained from a large number of dogs (97) from a single laboratory using the same measurement techniques.  相似文献   

6.
Occlusion pressures vs. micropipette pressures in the pulmonary circulation   总被引:2,自引:0,他引:2  
Because of the discrepancies between the arterial and venous occlusion technique and the micropuncture technique in estimating pulmonary capillary pressure gradient, we compared measurements made with the two techniques in the same preparations (isolated left lower lobe of dog lung). In addition, we also obtained direct and reliable measurements of pressures in 0.9-mm arteries and veins using a retrograde catheterization technique, as well as a microvascular pressure made with the double-occlusion technique. The following conclusions were made from dog lobes perfused with autologous blood at normal flow rate of 500-600 ml/min and pressure gradient of 12 mmHg. 1) The double-occlusion technique measures pressure in the capillaries, 2) a small pressure gradient (0.5 mmHg) exists between 30- to 50-micron arteries and veins, 3) a large pressure gradient occurs in arteries and veins greater than 0.9 mm, 4) the arterial and venous occlusion techniques measure pressures in vessels that are less than 900 microns diam but greater than 50 microns, very likely close to 100 microns, 5) serotonin constricts arteries (larger and smaller than 0.9 mm) whereas histamine constricts veins (larger and smaller than 0.9 mm). Thus three different techniques (small retrograde catheter, arterial and venous occlusion, and micropuncture) show consistent results, confirming the presence of significant resistance in large arteries and veins with minimal resistance in the microcirculation.  相似文献   

7.
The carotid chemoreceptors of narcotized, vagotomized and spontaneously breathing hydropenic cats in hypertonic mannite diuresis were stimulated by perfusion with venous blood penic cats in hypertonic mannite diuresis were stimulated by perfusion with venous blood for 70 min. Elevation of blood pressure at the innervated kidneys was prevented by an automatically controlled balloon located within the aorta. Stimulation of the chemoreceptors intensified respiration and raised the arterial systemic pressure. With the renal arteries at constant pressure, the effective renal plasma flow and the glomerular filtration rate significantly declined. The filtration fraction remained unchanged. The absolute urinary and sodium excretion did not change significantly, whereas the fractional time-volume, fractional sodium excretion, and the fractional osmotic excretion significantly increased. The fractional tubular reabsorption of osmotically free water was significantly enhanced. These reactions subsided during subsequent perfusion of the glomerula carotici with arterial blood. The results suggest that tubular sodium reabsorption is inhibited by stimulation of the carotid chemoreceptors, although re-adjustment of renal perfusion and filtrate volume cannot be excluded.  相似文献   

8.
In anaesthetised rats, bending of the body for 30 degrees and 45 degrees entailed a reverse linear dependence between the systolic and diastolic pressures under conditions of initial blood pressure over 95 mm Hg, whereas in initial blood pressure lower than 95 mm Hg the dependence is direct. In bending of the body for 60 degrees the dependence was direct and only present in initial blood pressure lower than 95 mm Hg. Pressor effects of mesaton in orthostasis directly depended on the level of the initial blood pressure. Any dependence of the cardiac output shifts on the initial blood pressure was absent. The direction and the degree of the arterial system reactivity's changes in response to orthostasis and adrenergic effect of mesaton was found to depend on the bending angle and the initial blood pressure level.  相似文献   

9.
The correlation analysis revealed no correlation within the range 110 to 80 mm Hg further transforming into a direct (within the range lower than 80 mm Hg) dependence of the pressure responses to mesatone on the reduction of initial mean arterial pressure under orthostatic hypotension in anaesthetised rats. Under paraverine hypotension a reverse correlation within the range 110-80 mm Hg transforming into a direct dependence (within the range lower than 80 mm Hg) of the responses to mesatone were observed. The dependence of cardiac shifts to mesatone on the initial arterial pressure was not occurred. The mechanisms of dependence of the systemic vascular responses on initial tone of arterial vessels, are discussed.  相似文献   

10.
Abstract: In order to study the influence of hypoxia on cyclic nucleotides in the brain, we reduced arterial Po, for 15–30 min in lightly anaesthetised and artificially ventilated rats to obtain values ranging from about 45 to about 10 mm Hg. In an additional group (arterial Po2 18–22 mm Hg), the tissue hypoxia was aggravated by moderate arterial hypotension (mean arterial blood pressure about 80 mm Hg). In all animals, electrocortical activity was recorded. Cyclic GMP concentrations in cerebral cortex were unchanged in all groups but one. In that group, in which tissue hypoxia was severe enough to induce a suppression-burst EEG pattern and a measurable reduction in the adenylate energy charge, cyclic GMP concentrations were slightly increased ( p < 0.05). Cyclic AMP concentrations remained unaltered at all degrees of hypoxia studied. It is concluded that changes in cyclic nucleotides in brain tissue occur first at such severe degrees of hypoxia of the duration studied that function and metabolism are profoundly altered.  相似文献   

11.
Aldosterone has been recognized as an important sodium retaining hormone for many years. Recently we have demonstrated that angiotensin II has a much more powerful antinatriuretic effect than that of aldosterone. The importance of angiotensin II in regulation of sodium excretion has been observed in experiments in which angiotensin II has been infused intravenously or into the renal artery in acute and chronic situations, and in studies involving blockade of angiotensin II formation. In other experiments we have studied the effects of changes in renal perfusion pressure on sodium excretion. While earlier work by others indicated that an acute 10 mm Hg increase in perfusion pressure would increase sodium excretion 60%-70% we observed that a chronic 10 mm Hg change in perfusion pressure would result in a 300% change in sodium excretion. In view of evidence suggesting that changes in the ability of the kidney to excrete sodium normally at normal arterial pressure is an important element in hypertension we studied the effects of aldosterone and angiotensin II on arterial pressure regulation in normal dogs. High physiological levels of each hormone were infused intravenously for several weeks. Both produced sustained hypertension. Aldosterone hypertension was a typical volume loading type with sodium retention, increased blood volume and extracellular fluid volume and a slow rise in arterial pressure. Angiotensin hypertension was a typical vasoconstrictor type with high peripheral resistance, normal or decreased blood volume, decreased cardiac output, a rapid rise in arterial pressure and only initial sodium retention.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We study the arterial and venous circulation of the normal leg by strain gauge plethysmography and venous occlusion (thigh tourniquet). We propose the application of a simplified linear physical model of the venous circulation. It helps to analyse the plethysmographic data recorded during and after the congestion. It ignores the arterial inflow and consider the post-occlusive venous volume decay in function of time as being monoexponential. The venous compliance (C) is measured when the volume has reached a steady-state level during the congestion (known pressure). The time-constant (T) characterizes the volume decay in function of time when the occlusion is released. The tourniquet is successively inflated with two levels of pressure (30 and 60 mm Hg) in order to check if the system is actually linear as predicted by the model. The venous outflow is not strictly monoexponential and the model is only suitable to describe the beginning of the curve. The compliance does not behave linearly, the values measured at 30 mm Hg, being higher than at 60 mm Hg ($ 26%). The time-constant T is slightly influenced by the level of pressures. The calculated resistance is therefore lower at low pressure. We also study the arterial inflow before and after the venous congestion (3 min, 60 mm Hg). We observe a post-venous occlusion hyperaemia (mean rest flow: 5.2%/min, mean hyperemic flow: 12.1%/min) followed by a drop of the inflow (mean minimal flow: 3.4%/min). We evaluate the quantitative influence of neglecting the arterial inflow on the computing of the venous properties. The simplification appears acceptable.  相似文献   

13.

Background and Purpose

Studies have suggested that the caudal ventral artery is a potential site for continuous arterial blood pressure monitoring in rats. However, the agreement of mean arterial pressure values between the femoral artery and the caudal ventral artery has not been investigated. This study was performed to identify whether the caudal ventral artery could be safely used for continuous blood pressure monitoring as an alternative site to the femoral artery.

Methods

Rats were randomized into four groups: Sprague Dawley rats under normothermia; Wistar rats under normothermia; Sprague Dawley rats under hypothermia; Wistar rats under hypothermia. Each rat underwent simultaneous monitoring of blood pressure using femoral artery and caudal ventral artery catheterization during a stable hemodynamic state and three periods of acute severe hemodynamic changes. The effects of rat strain, rectal temperature, experimental time course and hemodynamic factors on pressure gradients, the concordance of mean arterial pressure values between the femoral artery and the caudal ventral artery, and the rates of distal ischemia after surgery were determined.

Results

There was a significant difference in the rate of distal ischemia between femoral and caudal ventral arteries after catheterization (25% vs 5%, P<0.05). The overall mean gradient and the mean gradient under a steady hemodynamic state were 4.9±3.7 mm Hg and 5.5±2.5 mm Hg, respectively. The limits of agreement (bias±1.96 SD) were (−2.5 mm Hg, 12.3 mm Hg) and (-0.5 mm Hg, 10.5 mm Hg), respectively. Although the concordance decreased during the first 30 sec of each period of severe hemodynamic changes, the degree of agreement was acceptable regardless of the effects of rat strain and rectal temperature.

Conclusions

Based on the degree of agreement and the safety of catheterization, the caudal ventral artery may be a preferred site for continuous arterial blood pressure monitoring without acute severe hemodynamic changes.  相似文献   

14.
Six healthy males were exposed to 20 mm Hg lower body negative pressure (LBNP) for 8 min followed by 40 mm Hg LBNP for 8 min. Naloxone (0.1 mg.kg-1) was injected intravenously during a 1 h resting period after which the LBNP protocol was repeated. Systolic, mean, and diastolic arterial blood pressures (SAP, MAP, DAP), and central venous pressure (CVP) were obtained using indwelling catheters. Cardiac output (CO), forearm blood flow (FBF), heart rate (HR), left ventricular ejection time (LVET), and electromechanical systole (EMS) were measured non-invasively. Pulse pressure (PP), stroke volume (SV), total peripheral resistance (TPR), forearm vascular resistance (FVR), systolic ejection rate (SER), pre-ejection period (PEP), PEP/LVET and indices for the systolic time intervals (LVETI, EMSI, PEPI) were calculated. During the second LBNP exposure, only two parameters differed from the pre-injection values: DAP at LBNP = 40 mm Hg increased from 60.0 +/- 4.8 mm Hg to 64.8 +/- 4.1 mm Hg (N = 4, p less than 0.02) and LVETI at LBNP = 20 mm Hg increased from 384.4 +/- 5.2 ms to 396.8 +/- 6.2 ms (N = 6, p less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A mathematical model of the cerebral circulation has been formulated. It was based on non-linear equations of pulsatile fluid flow in distensible conduits and applied to a network simulating the entire cerebral vasculature, from the carotid and vertebral arteries to the sinuses and the jugular veins. The quasilinear hyperbolic system of equations was numerically solved using the two-step Lax-Wendroff scheme. The model's results were in good agreement with pressure and flow data recorded in humans during rest. The model was also applied to the study of autoregulation during arterial hypotension. A close relationship between cerebral blood flow (CBF) and capillary pressure was obtained. At arterial pressure of 80 mmHg, the vasodilation of the pial arteries was unable to maintain CBF at its control value. At the lower limit of autoregulation (60 mm Hg), CBF was maintained with a 25% increase of zero transmural pressure diameter of nearly the whole arterial network.  相似文献   

16.
Limited information is available about selection of the threshold for arterial blood pressure in critically ill patients, particularly in sepsis when normal organ blood flow autoregulation may be altered. The present experimental study investigated whether increasing perfusion pressure using norepinephrine in normotensive hyperdynamic porcine bacteremia affects intestinal macro- and microcirculation. Nine pigs received continuous i.v. administration of Pseudomonas aeruginosa (PSAE) to develop hyperdynamic, normotensive (mean arterial pressure [MAP] 65 mm Hg) sepsis. Norepinephrine was used to achieve 10-15 % increase in MAP. Mesenteric arterial blood flow (Q(gut)), ileal mucosal microvascular perfusion (LDF(gut)) and ileal-end-tidal PCO(2) gap (PCO(2) gap) were measured before norepinephrine, after 60 min of norepinephrine infusion and 60 min after norepinephrine infusion had been discontinued. During a 12 h period of PSAE infusion all pigs developed hyperdynamic circulation with significantly decreased MAP. Although the mesenteric blood flow remained unchanged, infusion of PSAE resulted in a gradual fall of ileal microvascular perfusion, which was associated with progressively rising PCO(2) gap. Norepinephrine which induced a 10-15 % increase in perfusion pressure (i.e. titrated to attain near baseline values of MAP) affected neither Q(gut) nor the intestinal blood flow distribution (Q(gut)/CO). Similarly, norepinephrine did not change either LDF(gut) or PCO(2) gap. In this hyperdynamic, normotensive porcine bacteremia, norepinephrine-induced increase in perfusion pressure exhibited neither beneficial nor deleterious effects on intestinal macrocirculatory blood flow and ileal mucosal microcirculation. The lack of changes suggests that the gut perfusion was within its autoregulatory range.  相似文献   

17.
Free Fatty Acids in the Rat Brain in Moderate and Severe Hypoxia   总被引:20,自引:16,他引:4  
Abstract: The effects of mild, moderate, and severe hypoxia on cerebral cortical concentrations of free fatty acids (FFAs) were investigated in artificially ventilated rats under nitrous oxide anaesthesia. No change occurred during either mild (arterial Po2 35–40 mm Hg) or moderate (Po2 25–30 mm Hg) hypoxia. The effects of severe hypoxia (Po2 about 20 mm Hg) combined with hypotension (mean arterial blood pressure 80–85 mm Hg) varied with the EEG pattern and the tissue energy state. Thus, a major increase in total as well as in individual FFAs occurred first when EEG was severely depressed (almost isoelectric) and energy homeostasis disrupted. On a relative basis the greatest change occurred in free arachidonic acid. It is concluded that hypoxia is associated with an increase in the concentrations of FFAs in brain tissue, provided that tissue oxygen deficiency is severe enough to cause tissue energy failure. However, an increase in FFAs does not invariably accompany minor reductions in the adenylate energy charge (EC) of the tissue.  相似文献   

18.
In order to evaluate hemodynamics in the complex vascular system of phocid seals, intravascular pressure profiles were measured during periods of rest-associated apnea in young elephant seals (Mirounga angustirostris). There were no significant differences between apneic and eupneic mean arterial pressures. During apnea, venous pressure profiles (pulmonary artery, thoracic portion of the vena cava (thoracic vena cava), extradural vein, and hepatic sinus) demonstrated only minor, transient fluctuations. During eupnea, all venous pressure profiles were dominated by respiratory fluctuations. During inspiration, pressures in the thoracic vena cava and extradural vein decreased -9 to -21 mm Hg, and -9 to -17 mm Hg, respectively. In contrast, hepatic sinus pressure increased 2-6 mm Hg during inspiration. Nearly constant hepatic sinus and intrathoracic vascular pressure profiles during the breath-hold period are consistent with incomplete constriction of the caval sphincter during these rest-associated apneas. During eupnea, negative inspiratory intravascular pressures in the chest ("the respiratory pump") should augment venous return via both the venae cavae and the extradural vein. It is hypothesized that, in addition to the venae cavae, the prominent para-caval venous system of phocid seals (i.e., the extradural vein) is necessary to allow adequate venous return for maintenance of high cardiac outputs and blood pressure during eupnea.  相似文献   

19.
The aim of the present study was to clarify whether tissue hypoxia is involved in the autoregulatory dilatation of cerebrocortical vessels occurring at moderate arterial hypotension. In order to avoid hypoxia that may occur during arterial hypotension, in one part of the experiments the brain cortices were superfused with oxygen saturated (pO2, approximately 500 mm Hg) artificial cerebrospinal fluid (mock CSF). In the other part of the experiments arterial hypotension was induced without superfusing the brain cortices (closed skull). Mean arterial blood pressure (MABP) was decreased in both experimental groups by bleeding to 75-85 mm Hg for approximately 5 min, then the shed blood was reinfused. Changes in cortical vascular volume (CVV), mean transit time of cortical blood flow (tm), and blood flow (CBF) were measured through a cranial window with a microscope reflectometer. Although CSF pO2 differed markedly between the superfused and nonsuperfused experimental groups, arterial hypotension led to similar changes in CVV and tm in both groups. Due to the proper dilatation of the cerebrocortical arterioles, CBF was not altered by arterial hypotension in either of the groups. These results suggest that the brain cortex does not become hypoxic at moderate arterial hypotension and, consequently, incipient tissue hypoxia has no role in the autoregulatory dilatation of the cerebrocortical arterial network.  相似文献   

20.
Hereditary hypertriglyceridemic (hHTG) rats are characterized by increased blood pressure and impaired endothelium-dependent relaxation of conduit arteries. The aim of this study was to investigate the effect of long-term (4 weeks) treatment of hHTG rats with three drugs which, according to their mechanism of action, may be able to modify the endothelial function: simvastatin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase), spironolactone (an antagonist of aldosterone receptors) and L-arginine (a precursor of nitric oxide formation). At the end of fourth week the systolic blood pressure in the control hHTG group was 148+/-2 mm Hg and in control normotensive Wistar group 117+/-3 mm Hg. L-arginine failed to reduce blood pressure, but simvastatin (118+/-1 mm Hg) and spironolactone (124+/-4 mm Hg) treatment significantly decreased the systolic blood pressure. In isolated phenylephrine-precontracted aortic rings from hHTG rats endothelium-dependent relaxation was diminished as compared to control Wistar rats. Of the three drugs used, only simvastatin improved acetylcholine-induced relaxation of the aorta. We conclude that both simvastatin and spironolactone reduced blood pressure but only simvastatin significantly improved endothelial dysfunction of aorta. Prominent increase in the expression of eNOS in large conduit arteries may be the pathophysiological mechanism underlying the protective effect of simvastatin in hHTG rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号