首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The V3 loop of the HIV-1 envelope glycoprotein gp120 is involved in binding to the CCR5 and CXCR4 coreceptors. The structure of an HIV-1(MN) V3 peptide bound to the Fv of the broadly neutralizing human monoclonal antibody 447-52D was solved by NMR and found to be a beta hairpin. This structure of V3(MN) was found to have conformation and sequence similarities to beta hairpins in CD8 and CCR5 ligands MIP-1alpha, MIP-1beta, and RANTES and differed from the beta hairpin of a V3(IIIB) peptide bound to the strain-specific murine anti-gp120(IIIB) antibody 0.5beta. In contrast to the structure of the bound V3(MN) peptide, the V3(IIIB) peptide resembles a beta hairpin in SDF-1, a CXCR4 ligand. These data suggest that the 447-52D-bound V3(MN) and the 0.5beta-bound V3(IIIB) structures represent alternative V3 conformations responsible for selective interactions with CCR5 and CXCR4, respectively.  相似文献   

2.
BACKGROUND: The protein 0.5beta is a potent strain-specific human immunodeficiency virus type 1 (HIV-1) neutralizing antibody raised against the entire envelope glycoprotein (gp120) of the HIV-1(IIIB) strain. The epitope recognized by 0.5beta is located within the third hypervariable region (V3) of gp120. Recently, several HIV-1 V3 residues involved in co-receptor utilization and selection were identified. RESULTS: Virtually complete sidechain assignment of the variable fragment (Fv) of 0.5beta in complex with the V3(IIIB) peptide P1053 (RKSIRIQRGPGRAFVTIG, in single-letter amino acid code) was accomplished and the combining site structure of 0.5beta Fv complexed with P1053 was solved using multidimensional nuclear magnetic resonance (NMR). Five of the six complementarity determining regions (CDRs) of the antibody adopt standard canonical conformations, whereas CDR3 of the heavy chain assumes an unexpected fold. The epitope recognized by 0.5beta encompasses 14 of the 18 P1053 residues. The bound peptide assumes a beta-hairpin conformation with a QRGPGR loop located at the very center of the binding pocket. The Fv and peptide surface areas buried upon binding are 601 A and 743 A(2), respectively, in the 0.5beta Fv-P1053 mean structure. The surface of P1053 interacting with the antibody is more extensive and the V3 peptide orientation in the binding site is significantly different compared with those derived from the crystal structures of a V3 peptide of the HIV-1 MN strain (V3(MN)) complexed to three different anti-peptide antibodies. CONCLUSIONS: The surface of P1053 that is in contact with the anti-protein antibody 0.5beta is likely to correspond to a solvent-exposed region in the native gp120 molecule. Some residues of this region of gp120 are involved in co-receptor binding, and in discrimination between different chemokine receptors utilized by the protein. Several highly variable residues in the V3 loop limit the specificity of the 0.5beta antibody, helping the virus to escape from the immune system. The highly conserved GPG sequence might have a role in maintaining the beta-hairpin conformation of the V3 loop despite insertions, deletions and mutations in the flanking regions.  相似文献   

3.
We have used an indirect-capture enzyme-linked immunosorbent assay to quantitate the reactivity of sera from human immunodeficiency virus type 1 (HIV-1)-infected humans with native recombinant gp120 (HIV-1 IIIB or SF-2) or with the gp120 molecule (IIIB or SF-2) denatured by being boiled in the presence of dithiothreitol with or without sodium dodecyl sulfate. Denaturation of IIIB gp120 reduced the titers of sera from randomly selected donors by at least 100-fold, suggesting that the majority of cross-reactive anti-gp120 antibodies present are directed against discontinuous or otherwise conformationally sensitive epitopes. When SF-2 gp120 was used, four of eight serum samples reacted significantly with the denatured protein, albeit with ca. 3- to 50-fold reductions in titer. Only those sera reacting with denatured SF-2 gp120 bound significantly to solid-phase-adsorbed SF-2 V3 loop peptide, and none bound to IIIB V3 loop peptide. Almost all antibody binding to reduced SF-2 gp120 was blocked by preincubation with the SF-2 V3 loop peptide, as was about 50% of the binding to native SF-2 gp120. When sera from a laboratory worker or a chimpanzee infected with IIIB were tested, the pattern of reactivity was reversed, i.e., there was significant binding to reduced IIIB gp120, but not to reduced SF-2 gp120. Binding of these sera to reduced IIIB gp120 was 1 to 10% that to native IIIB gp120 and was substantially decreased by preincubation with IIIB (but not SF-2) V3 loop peptide. To analyze which discontinuous or conformational epitopes were predominant in HIV-1-positive sera, we prebound monoclonal antibodies (MAbs) to IIIB gp120 and then added alkaline phosphatase-labelled HIV-1-positive sera. MAbs (such as 15e) that recognize discontinuous epitopes and compete directly with CD4 reduced HIV-1-positive sera binding by about 50%, whereas neutralizing MAbs to the C4, V2, and V3 domains of gp120 were either not inhibitory or only weakly so. Thus, antibodies to the discontinuous CD4-binding site on gp120 are prevalent in HIV-1-positive sera, antibodies to linear epitopes are less common, most of the antibodies to linear epitopes are directed against the V3 region, and most cross-reactive antibodies are directed against discontinuous epitopes, including regions involved in CD4 binding.  相似文献   

4.
Human monoclonal antibody (mAb) 447-52D neutralizes a broad spectrum of HIV-1 isolates, whereas murine mAb 0.5beta, raised against gp120 of the X4 isolate HIV-1(IIIB), neutralizes this strain specifically. Two distinct gp120 V3 peptides, V3(MN) and V3(IIIB), adopt alternative beta-hairpin conformations when bound to 447-52D and 0.5beta, respectively, suggesting that the alternative conformations of this loop play a key role in determining the coreceptor specificity of HIV-1. To test this hypothesis and to better understand the molecular basis underlying an antibody's breadth of neutralization, the solution structure of the V3(IIIB) peptide bound to 447-52D was determined by NMR. V3(IIIB) and V3(MN) peptides bound to 447-52D exhibited the same N-terminal strand conformation, while the V3(IIIB) peptide revealed alternative N-terminal conformations when bound to 447-52D and 0.5beta. Comparison of the three known V3 structures leads to a model in which a 180 degrees change in the orientation of the side chains and the resulting one-residue shift in hydrogen bonding patterns in the N-terminal strand of the beta-hairpins markedly alter the topology of the surface that interacts with antibodies and that can potentially interact with the HIV-1 coreceptors. Predominant interactions of 447-52D with three conserved residues of the N-terminal side of the V3 loop, K312, I314, and I316, can account for its broad cross reactivity, whereas the predominant interactions of 0.5beta with variable residues underlie its strain specificity.  相似文献   

5.
Solid-state NMR measurements have been carried out on frozen solutions of the complex of a 24-residue peptide derived from the third variable (V3) loop of the HIV-1 envelope glycoprotein gp120 bound to the Fab fragment of an anti-gp120 antibody. The measurements place strong constraints on the conformation of the conserved central GPGR motif of the V3 loop in the antibody-bound state. In combination with earlier crystal structures of V3 peptide-antibody complexes and existing data on the cross-reactivity of the antibodies, the solid-state NMR measurements suggest that the Gly-Pro-Gly-Arg (GPGR) motif adopts an antibody-dependent conformation in the bound state and may be conformationally heterogeneous in unbound, full-length gp120. These measurements are the first application of solid-state NMR methods in a structural study of a peptide-protein complex.  相似文献   

6.
The proline-rich tandem repeat domain of human mucin MUC1 forms an extended structure containing large repeating loops that are crested by a turn. We show that the repeating-loop structure of MUC1 can be replaced by an antibody complementarity-determining region loop of a human immunodeficiency virus type 1 (HIV-1)-specific neutralizing antibody to create a chimeric, multivalent, mucin-like, anti-HIV-1 compound. We used 8 residues of an antibody molecule to replace 8 of 20 residues of the MUC1 tandem-repeat sequence. The antiviral peptide discussed here contains three copies of a 20-residue tandem repeat, (IYYDYEEDPAPGSTAPPAHG)3, for a total of 60 residues. We demonstrate that the mucin-antibody chimera retains the binding specificity of the parent antibody (monoclonal antibody F58), GPGR of the HIV-1 gp120 V3 neutralizing epitope, and the ability to neutralize virus particles. In inhibition enzyme-linked immunosorbent assay, the mucin-antibody chimeric peptide could inhibit 71 to 84% of binding to a V3 loop peptide by monoclonal antibodies known to be specific for GPGR in the V3 loop. The mucin-antibody chimeric peptide could also inhibit monoclonal antibody binding to native gp120 captured from virus particles. In addition, the chimeric peptide neutralized the homologous HIV-IIIB virus in a standard neutralization assay. The methods of antiviral peptide design and construction presented here are general and theoretically limited only by the size of the antibody repertoire. This approach could be used to synthesize peptides for a variety of therapeutic applications.  相似文献   

7.
The Fv is the smallest antigen binding fragment of the antibody and is made of the variable domains of the light and heavy chains, V(L) and V(H), respectively. The 26-kDa Fv is amenable for structure determination in solution using multi-dimensional hetero-nuclear NMR spectroscopy. The human monoclonal antibody 447-52D neutralizes a broad spectrum of HIV-1 isolates. This anti-HIV-1 antibody elicited in an infected patient is directed against the third variable loop (V3) of the envelope glycoprotein (gp120) of the virus. The V3 loop is an immunodominant neutralizing epitope of HIV-1. To obtain the 447-52D Fv for NMR studies, an Escherichia coli bicistronic expression vector for the heterodimeric 447-52D Fv and vectors for single chain Fv and individually expressed V(H) and V(L) were constructed. A pelB signal peptide was linked to the antibody genes to enable secretion of the expressed polypeptides into the periplasm. For easy cloning of any antibody gene without potential modification of the antibody sequence, restriction sites were introduced in the pelB sequence and following the termination codon. A set of oligonucleotides that prime the leader peptide genes of all potential antibody human antibodies were designed as backward primers. The forward primers for the V(L) and V(H) were based on constant region sequences. The 447-52D Fv could not be expressed either by a bicistronic vector or as single chain Fv, probably due to its toxicity to Escherichia coli. High level of expression was obtained by individual expression of the V(H) and the V(L) chains, which were then purified and recombined to generate a soluble and active 447-52D Fv fragment. The V(L) of mAb 447-52D was uniformly labeled with 13C and 15N nuclei (U-13C/15N). Preliminary NMR spectra demonstrate that structure determination of the recombinant 447-52D Fv and its complex with V3 peptides is feasible.  相似文献   

8.
Multiple Ag peptide (MAP) system without the use of a protein carrier was used as a vaccine model in three species of animals. Synthetic peptides from the V3 region of the gp120 of IIIB, RF and MN HIV-1 isolates were used as the Ag. MAP consisting of various chain lengths, from 11 to 24 residues, were prepared in a monoepitope configuration containing four repeats of each individual peptide. In parallel, they were synthesized in a diepitope configuration adding at the carboxyl-terminus of the V3 peptides a conserved sequence, known to be a Th cell epitope of gp120. The antibody response elicited by the monoepitope constructs was species-dependent. Rabbits produced immunity against all nine peptides, whereas mice were strongly reactive mainly to the longest sequence of the IIIB isolate. The immune response of guinea pigs was intermediate to those of rabbits and mice. Diepitope MAPs were immunogenic in all three species and elicited significantly higher titers than those raised by the immunization with the monoepitope MAPs. The response was type specific; the high-titered antibodies were reactive mostly against the isolate from which the peptides were derived, with a small cross-reactivity in ELISA between IIIB and RF strains. The dominant antigenic site of the B cell epitope, IIIB sequence, was located at the amino and central part of the MAP and a sequence overlapping the putative V3 reverse-turn was particularly reactive with the raised antibodies. Moreover, sera from the immunized animals inhibited virus-dependent cell fusion. These results show that MAP, with a chemically defined structure and without the use of a protein carrier, can be potentially useful for the design of synthetic HIV-1 vaccine candidates.  相似文献   

9.
447-52D is a human monoclonal antibody isolated from a heterohybridoma derived from an HIV-1-infected individual. This antibody recognizes the hypervariable gp120 V3 loop, and neutralizes both X4 and R5 primary isolates, making it one of the most effective anti-V3 antibodies characterized to date. The crystal structure of the 447-52D Fab in complex with a 16-mer V3 peptide at 2.5 A resolution reveals that the peptide beta hairpin forms a three-stranded mixed beta sheet with complementarity determining region (CDR) H3, with most of the V3 side chains exposed to solvent. Sequence specificity is conferred through interaction of the type-II turn (residues GPGR) at the apex of the V3 hairpin with the base of CDR H3. This novel mode of peptide-antibody recognition enables the antibody to bind to many different V3 sequences where only the GPxR core epitope is absolutely required.  相似文献   

10.
The aim of this study was to dissect neutralizing anti-gp120 antibody populations in seropositive asymptomatic individuals. Murine anti-Id mAb were raised against polyclonal affinity-purified human anti-gp120 antibodies. These anti-Id mAb were used to fractionate anti-gp120 antibodies from a pool of HIV-positive sera into idiotypically distinct anti-gp120 antibody (Id+Ab) preparations. Immunochemical and neutralization studies indicated that all Id+Ab that neutralized HIV-1 in vitro interacted with either the V3 loop or the CD4 attachment site of gp120. The V3-specific Id+Ab neutralized HIV-1 in a strain-restricted manner. Id+Ab specific for the CD4 attachment site exhibited different spectra of neutralizing activities against multiple strains of HIV-1. This finding indicates that multiple, antigenically diverse epitopes reside around the CD4 attachment site of gp120. Significantly, depletion of the Id+Ab from affinity-purified total anti-gp120 antibodies abrogated most of the neutralizing activities of these antibodies, suggesting that neutralizing anti-gp120 antibodies consist of two major specificities, either to the V3 region or to the CD4 attachment site. The understanding of specificities and neutralizing activities of different anti-gp120 antibodies in seropositive healthy individuals will be helpful for designing effective vaccines and immunotherapeutic strategies for AIDS.  相似文献   

11.
BACKGROUND: 3B3 is a high-affinity anti-gp120 antibody that neutralizes a wide range of primary and laboratory isolates of HIV-1. The parental antibody was isolated from a combinatorial phage display library constructed from bone marrow RNA of an HIV-infected individual. We have generated a highly active immunotoxin using the 3B3 single-chain Fv (scFv) which can specifically kill lymphocytes infected by HIV-1. MATERIALS AND METHODS: We used recombinant DNA technology to clone the Fv fragment of 3B3 and produce a single-chain Fv (scFv). 3B3 scFv was then fused to a truncated version of Pseudomonas exotoxin A (PE38), giving rise to a recombinant immunotoxin 3B3(Fv)-PE38 that was expressed in E. coli and purified to near homogeneity. RESULTS: 3B3(Fv)-PE38 binds with the same affinity as the parental Fab antibody to the MN strain of gp120. The immunotoxin specifically kills a gp120-expressing transfected cell line and a chronically HIV-infected lymphocytic cell line. The immunotoxin is very stable at 37 degrees C, retaining 80% of its original activity after 24 hr. CONCLUSIONS: Potent immunotoxins such as 3B3(Fv)-PE38 could be utilized in combination with multidrug cocktails that limit viral replication to help reduce viral reservoirs in patients with AIDS.  相似文献   

12.
Emergence in two chimpanzees of human immunodeficiency virus type 1 (HIV-1) IIIB variants resistant to neutralization by the preexisting antibody is described. Viruses isolated from the HIV-1 IIIB gp120-vaccinated and -challenged animal were more resistant to neutralization by the chimpanzee's own serum than viruses isolated from the naive infected animal, indicating immune pressure as the selective mechanism. However, all reisolated viruses were 16- to 256-fold more neutralization resistant than the inoculum virus to antibodies binding to the third variable domain (V3) of the HIV-1 external envelope. Early chimpanzee serum samples that neutralized the inoculum strain but not the reisolated viruses were found to bind an HIV-1 IIIB common nonapeptide (IQRGPGRAF) derived from the gp120 isolate-specific V3 domain shown to induce isolate-specific neutralization in other animals. Amplification of the V3 coding sequence by polymerase chain reaction and subsequent sequence analysis of the neutralization-resistant variants obtained from in vivo-infected animals indicated that early resistance to neutralization by an HIV-1 IIIB monoclonal antibody (0.5 beta) was conferred by changes outside the direct binding site for the selective neutralizing antibody. The reisolated neutralization-resistant isolates consisted of the lower-replication-competent virus subpopulations of the HIV-1 IIIB stock, as confirmed by biological and sequence analyses. In vitro passage of the HIV-1 IIIB stock through chimpanzee and human peripheral blood mononuclear cell cultures void of HIV-specific antibody resulted in homogenic amplification of the more-replication-competent subpopulation preexisting in the original viral stock, suggesting a role for the immune system in suppressing the more-replication-competent viruses.  相似文献   

13.
BACKGROUND: The third hypervariable (V3) loop of HIV-1 gp120 has been termed the principal neutralizing determinant (PND) of the virus and is involved in many aspects of virus infectivity. The V3 loop is required for viral entry into the cell via membrane fusion and is believed to interact with cell surface chemokine receptors on T cells and macrophages. Sequence changes in V3 can affect chemokine receptor usage, and can, therefore, modulate which types of cells are infected. Antibodies raised against peptides with V3 sequences can neutralize laboratory-adapted strains of the virus and inhibit syncytia formation. Fab fragments of these neutralizing antibodies in complex with V3 loop peptides have been studied by X-ray crystallography to determine the conformation of the V3 loop. RESULTS: We have determined three crystal structures of Fab 58.2, a broadly neutralizing antibody, in complex with one linear and two cyclic peptides the amino acid sequence of which comes from the MN isolate of the gp120 V3 loop. Although the peptide conformations are very similar for the linear and cyclic forms, they differ from that seen for the identical peptide bound to a different broadly neutralizing antibody, Fab 59.1, and for a similar peptide bound to the MN-specific Fab 50.1. The conformational difference in the peptide is localized around residues Gly-Pro-Gly-Arg, which are highly conserved in different HIV-1 isolates and are predicted to adopt a type II beta turn. CONCLUSIONS: The V3 loop can adopt at least two different conformations for the highly conserved Gly-Pro-Gly-Arg sequence at the tip of the loop. Thus, the HIV-1 V3 loop has some inherent conformational flexibility that may relate to its biological function.  相似文献   

14.
The 0.5beta monoclonal antibody is a very potent strain-specific HIV-neutralizing antibody raised against gp120, the envelope glycoprotein of HIV-1. This antibody recognizes the V3 loop of gp120, which is a major neutralizing determinant of the virus. The antibody-peptide interactions, involving aromatic and negatively charged residues of the antibody 0.5beta, were studied by NMR and double-mutant cycles. A deuterated V3 peptide and a Fab containing deuterated aromatic amino acids were used to assign these interactions to specific V3 residues and to the amino acid type and specific chain of the antibody by NOE difference spectroscopy. Electrostatic interactions between negatively charged residues of the antibody Fv and peptide residues were studied by mutagenesis of both antibody and peptide residues and double-mutant cycles. Several interactions could be assigned unambiguously: F96(L) of the antibody interacts with Pro13 of the peptide, H52(H) interacts with Ile7, Ile9 and Gln10 and D56(H) interacts with Arg11. The interactions of the light-chain tyrosines with Pro13 and Gly14 could be assigned to either Y30a(L) and Y32(L), respectively, or Y32(L) and Y49(L), respectively. Three heavy-chain tyrosines interact with Ile7, Ile20 and Phe17. Several combinations of assignments involving Y32(H), Y53(H), Y96(H) and Y100a(H) may satisfy the NMR and mutagenesis constraints, and therefore at this stage the interactions of the heavy-chain tyrosines were not taken into account. The unambiguous assignments [F96(L), H52(H) and D56(H)] and the two possible assignments of the light-chain tyrosines were used to dock the peptide into the antibody-combining site. The peptide converges to a unique position within the binding site, with the RGPG loop pointing into the center of the groove formed by the antibody complementary determining regions while retaining the beta-hairpin conformation and the type-VI RGPG turn [Tugarinov, V., Zvi, A., Levy, R. & Anglister, J. (1999) Nat. Struct. Biol. 6, 331-335].  相似文献   

15.
The structural and antigenic properties of a peptide ("CRK") derived from the V3 loop of HIV-1 gp120 protein were studied using NMR and SPR techniques. The sequence of CRK corresponds to the central portion of the V3 loop containing the highly conserved "GPGR" residue sequence. Although the biological significance of this conserved sequence is unknown, the adoption of conserved secondary structure (type II beta-turn) in this region has been proposed. The tendency of CRK (while free or conjugated to protein), to adopt such structure and the influence of such structure upon CRK antigenicity were investigated by NMR and SPR, respectively. Regardless of conjugation, CRK is conformationally averaged in solution but a weak tendency of the CRK "GPGR" residues to adopt a beta-turn conformation was observed after conjugation. The influence of GPGR structure upon CRK antigenicity was investigated by measuring the affinities of two cognate antibodies: "5023A" and "5025A," for CRK, protein-conjugated CRK and gp120 protein. Each antibody bound to all the antigens with nearly the same affinity. From these data, it appears that: (a) antibody binding most likely involves an induced fit of the peptide and (b) the gp120 V3 loop is probably conformationally heterogeneous. Since 5023A and 5025A are HIV-1 neutralizing antibodies, neutralization in these cases appears to be independent of adopted GPGR beta-turn structure.  相似文献   

16.
Garcia J  Dumy P  Rosen O  Anglister J 《Biochemistry》2006,45(13):4284-4294
The V3 loop is part of the gp120 glycoprotein, an extracellular protein located on the membrane of the human immunodeficiency virus (HIV-1). This loop is significantly important in many biological processes of the virus and contains the principal neutralizing determinant (PND). The PND is one of the most variable regions of the envelope, and this is probably related to the ability of the HIV virus to escape the immunologic defenses of the target host. Particular attention has been paid to the central part of the V3 loop which contains a highly conserved GPGR/GPGQ sequence and represents the binding site for antibodies. Many attempts have been made to design synthetic peptides as mimics of the V3 loop capable of eliciting immune response. However, this strategy suffers from the great conformational flexibility small peptides have in solution, which together with bioavailability represents the most important limitation to the usefulness of synthetic peptides as drugs and as synthetic immunogens. The use of conformationally constrained peptides can alleviate this problem. Early works using NMR studies have shown that a V3(IIIB) loop-derived peptide is conformationally heterogeneous when free in water. Upon complexation with 0.5beta, a monoclonal neutralizing antibody specific for the HIV-1(IIIB) strain, it adopts a beta-hairpin conformation with the central proline forming a type VIb beta-turn. In this study, we report the design and characterization of a conformationally restricted peptide with a sequence identical to that previously described, but with thiazolidine derivatives replacing the proline. The affinity of the 2,2-dimethylthiazolidine derivative for 0.5beta demonstrates that this moiety can successfully be used to mimic the proline in a cis conformation. This peptide not only displays a high propensity to adopt a beta-hairpin conformation but also retains the type VIb RGPG beta-turn similar to that found in the native complex. These compounds could help in elaborating more efficient immunogens for HIV-1 synthetic vaccine development.  相似文献   

17.
F425-B4e8 (B4e8) is a monoclonal antibody isolated from a human immunodeficiency virus type 1 (HIV-1)-infected individual that recognizes the V3 variable loop on the gp120 subunit of the viral envelope spike. B4e8 neutralizes a subset of HIV-1 primary isolates from subtypes B, C and D, which places this antibody among the very few human anti-V3 antibodies with notable cross-neutralizing activity. Here, the crystal structure of the B4e8 Fab′ fragment in complex with a 24-mer V3 peptide (RP142) at 2.8 Å resolution is described. The complex structure reveals that the antibody recognizes a novel V3 loop conformation, featuring a five-residue α-turn around the conserved GPGRA apex of the β-hairpin loop. In agreement with previous mutagenesis analyses, the Fab′ interacts primarily with V3 through side-chain contacts with just two residues, IleP309 and ArgP315, while the remaining contacts are to the main chain. The structure helps explain how B4e8 can tolerate a certain degree of sequence variation within V3 and, hence, is able to neutralize an appreciable number of different HIV-1 isolates.  相似文献   

18.
Two monoclonal antibodies designated BAT085 and G3-136 were raised by immunizing BALB/c mice with gp120 purified from human immunodeficiency virus type 1 (HIV-1) IIIB-infected H9 cell extracts. Among three HIV-1 laboratory isolates (IIIB, MN, and RF), BAT085 neutralized only IIIB infection of CEM-SS cells, whereas G3-136 neutralized both IIIB and RF. These antibodies also neutralized a few primary HIV-1 isolates in the infection of activated human peripheral blood mononuclear cells. In indirect immunofluorescence assays, BAT085 bound to H9 cells infected with IIIB or MN, while G3-136 bound to H9 cells infected with IIIB or RF, but not MN. Using sequence-overlapping synthetic peptides of HIV-1 IIIB gp120, the binding site of BAT085 and G3-136 was mapped to a peptidic segment in the V2 region (amino acid residues 169 to 183). The binding of these antibodies to immobilized gp120 was not inhibited by the antibodies directed to the principal neutralization determinant in the V3 region or to the CD4-binding domain of gp120. In a competition enzyme-linked immunosorbent assay, soluble CD4 inhibited G3-136 but not BAT085 from binding to gp120. Deglycosylation of gp120 by endo-beta-N-acetylglucosaminidase H or reduction of gp120 by dithiothreitol diminished its reactivity with G3-136 but not with BAT085. These results indicate that the V2 region of gp120 contains multiple neutralization determinants recognized by antibodies in both a conformation-dependent and -independent manner.  相似文献   

19.
The monoclonal antibody 1696, elicited by HIV-1 protease, inhibits the activity of both HIV-1 and HIV-2 proteases with inhibition constants in the low nanomolar range. The antibody cross-reacts with peptides derived from the N-terminal region of both proteases. The crystal structure of the recombinant single-chain Fv fragment of 1696 complexed with an N-terminal peptide from the HIV-2 protease has been determined at 1.88A resolution. Interactions of the peptide with scFv1696 are compared with the previously reported structure of scFv1696 in complex with the corresponding peptide from HIV-1 protease. The origin of cross-reactivity of mAb1696 with HIV proteases is discussed.  相似文献   

20.
Three closely related molecular human immunodeficiency virus type 1 (HIV-1) clones, with differential neutralization phenotypes, were generated by cloning of an NcoI-BamHI envelope (env) gene fragment (HXB2R nucleotide positions 5221 to 8021) into the full-length HXB2 molecular clone of HIV-1 IIIB. These env gene fragments, containing the complete gp120 coding region and a major part of gp41, were obtained from three different biological clones derived from a chimpanzee-passaged HIV-1 IIIB isolate. Two of the viruses thus obtained (4.4 and 5.1) were strongly resistant to neutralization by infection-induced chimpanzee and human polyclonal antibodies and by HIV-1 IIIB V3-specific monoclonal antibodies and weakly resistant to soluble CD4 and a CD4-binding-site-specific monoclonal antibody. The third virus (6.8) was sensitive to neutralization by the same reagents. The V3 coding sequence and the gp120 amino acid residues important for the discontinuous neutralization epitope overlapping the CD4-binding site were completely conserved among the clones. However, the neutralization-resistant clones 4.4 and 5.1 differed from neutralization-sensitive clone 6.8 by two mutations in gp41. Exchange experiments confirmed that the 3' end of clone 6.8 (nucleotides 6806 to 8021; amino acids 346 to 752) conferred a neutralization-sensitive phenotype to both of the neutralization-resistant clones 4.4 and 5.1. From our study, we conclude that mutations in the extracellular portion of gp41 may affect neutralization sensitivity to gp120 antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号