首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Campylobacter jejuni , a prevalent cause of bacterial gastroenteritis, must adapt to different environments to be a successful pathogen. We previously identified a C. jejuni two-component regulatory system (Cj1226/7c) as upregulated during cell infections. Analyses described herein led us to designate the system CprRS ( C ampylobacter p lanktonic growth r egulation). While the response regulator was essential, a cprS sensor kinase mutant was viable. The Δ cprS mutant displayed an apparent growth defect and formed dramatically enhanced and accelerated biofilms independent of upregulation of previously characterized surface polysaccharides. Δ cprS also displayed a striking dose-dependent defect for colonization of chicks and was modestly enhanced for intracellular survival in INT407 cells. Proteomics analyses identified changes consistent with modulation of essential metabolic genes, upregulation of stress tolerance proteins, and increased expression of MOMP and FlaA. Consistent with expression profiling, we observed enhanced motility and secretion in Δ cprS , and decreased osmotolerance and oxidative stress tolerance. We also found that C. jejuni biofilms contain a DNase I-sensitive component and that biofilm formation is influenced by deoxycholate and the metabolic substrate fumarate. These results suggest that CprRS influences expression of factors important for biofilm formation, colonization and stress tolerance, and also add to our understanding of C. jejuni biofilm physiology.  相似文献   

4.
5.
6.
7.
8.
Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open reading frame encoding a Fur homolog (designated PerR for "peroxide stress regulator") was identified in the genome sequence of C. jejuni. The perR gene was disrupted by a kanamycin resistance cassette in C. jejuni wild-type and fur mutant strains. Subsequent characterization of the C. jejuni perR mutants showed derepressed expression of both AhpC and KatA at a much higher level than that obtained by iron limitation, suggesting that expression of these genes is controlled by other regulatory factors in addition to the iron level. Other iron-regulated proteins were not affected by the perR mutation. The fur perR double mutant showed derepressed expression of known iron-repressed genes. Further phenotypic analysis of the perR mutant, fur mutant, and the fur perR double mutant showed that the perR mutation made C. jejuni hyperresistant to peroxide stress caused by hydrogen peroxide and cumene hydroperoxide, a finding consistent with the high levels of KatA and AhpC expression, and showed that these enzymes were functional. Quantitative analysis of KatA expression showed that both the perR mutation and the fur mutation had profound effects on catalase activity, suggesting additional non-iron-dependent regulation of KatA and, by inference, AhpC. The PerR protein is a functional but nonhomologous substitution for the OxyR protein, which regulates peroxide stress genes in other gram-negative bacteria. Regulation of peroxide stress genes by a Fur homolog has recently been described for the gram-positive bacterium Bacillus subtilis. C. jejuni is the first gram-negative bacterium where non-OxyR regulation of peroxide stress genes has been described and characterized.  相似文献   

9.
Two-component regulatory systems play a major role in the physiological response of bacteria to environmental stimuli. Such systems are composed of a sensor histidine kinase and a response regulator whose ultimate function is to affect the expression of target genes. Response regulator mutants of Campylobacter jejuni strain F38011 were screened for sensitivity to sodium deoxycholate. A mutation in Cj0643, which encodes a response regulator with no obvious cognate histidine kinase, resulted in an absence of growth on plates containing a subinhibitory concentration of sodium deoxcholate (1%, wt/vol). In broth cultures containing 0.05% (wt/vol) sodium deoxycholate, growth of the mutant was significantly inhibited compared to growth of the C. jejuni F38011 wild-type strain. Complementation of the C. jejuni cbrR mutant in trans restored growth in both broth and plate cultures supplemented with sodium deoxycholate. Based on the phenotype displayed by its mutation, we designated the gene corresponding to Cj0643 as cbrR (Campylobacter bile resistance regulator). While the MICs of a variety of bile salts and other detergents for the C. jejuni cbrR mutant were lower, no difference was noted in its sensitivity to antibiotics or osmolarity. Finally, chicken colonization studies demonstrated that the C. jejuni cbrR mutant had a reduced ability to colonize compared to the wild-type strain. These data support previous findings that bile resistance contributes to colonization of chickens and establish that the response regulator, CbrR, modulates resistance to bile salts in C. jejuni.  相似文献   

10.
11.
12.
Campylobacter jejuni is a highly prevalent food-borne pathogen that causes diarrhoeal disease in humans. A natural zoonotic, it must overcome significant stresses both in vivo and during transmission despite the absence of several traditional stress response genes. Although relatively little is understood about its mechanisms of pathogenesis, its ability to interact with and invade human intestinal epithelial cells closely correlates with virulence. A C. jejuni microarray-based screen revealed that several known virulence genes and several uncharacterized genes, including spoT, were rapidly upregulated during infection of human epithelial cells. spoT and its homologue relA have been shown in other bacteria to regulate the stringent response, an important stress response that to date had not been demonstrated for C. jejuni or any other epsilon-proteobacteria. We have found that C. jejuni mounts a stringent response that is regulated by spoT. Detailed analyses of a C. jejuni delta spoT mutant revealed that the stringent response is required for several specific stress, transmission and antibiotic resistance-related phenotypes. These include stationary phase survival, growth and survival under low CO2/high O2 conditions, and rifampicin resistance. A secondary suppressor strain that specifically rescues the low CO2 growth defect of the delta spoT mutant was also isolated. The stringent response additionally proved to be required for the virulence-related phenotypes of adherence, invasion, and intracellular survival in two human epithelial cell culture models of infection; spoT is the first C. jejuni gene shown to participate in longer term survival in epithelial cells. Microarray analyses comparing wild-type to the delta spoT mutant also revealed a strong correlation between gene expression profiles and phenotype differences observed. Together, these data demonstrate a critical role for the C. jejuni stringent response in multiple aspects of C. jejuni biology and pathogenesis and, further, may lend novel insight into unexplored features of the stringent response in other prokaryotic organisms.  相似文献   

13.
14.
15.
16.
Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.  相似文献   

17.
18.
An oxidative stress-sensitive protein was found in the microaerophile Campylobacter jejuni. A novel 27-kDa protein was found to decrease concomitantly with a decrease in viability from either exogenous H(2)O(2) stress or endogenous oxidative stresses in aerobic conditions. Sequence analyses revealed that the 27-kDa protein was identical to Cj0012c in C. jejuni NCTC11168 and its deduced 215 amino acid sequence has similarity to two non-heme iron proteins found in other bacteria, rubredoxin oxidoreductase (Rbo) and rubrerythrin (Rbr). Thus, we designated the protein as Rrc (Rbo/Rbr-like protein of C. jejuni). In H(2)O(2)-treated cells, Western blot analysis showed some bands smaller than Rrc, and RT-PCR showed similar expression of Rrc mRNA to the control without treatment, suggesting that the sensitive response of Rrc to oxidative stress is due to degradation of the protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号