首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutant Presenilin proteins cause early-onset familial Alzheimer's disease in humans and Caenorhabditis elegans Presenilins may facilitate Notch receptor signaling. We have isolated a Drosophila Presenilin homologue and determined the spatial and temporal distribution of the encoded protein as well as its localization relative to the fly Notch protein. In contrast to previous mRNA in situ studies, we find that Presenilin is widely expressed throughout oogenesis, embryogenesis, and imaginal development, and generally accumulates at comparable levels in neuronal and nonneuronal tissues. Double immunolabeling with Notch antibodies revealed that Presenilin and Notch are coexpressed in many tissues throughout Drosophila development and display partially overlapping subcellular localizations, supporting a possible functional link between Presenilin and Notch.  相似文献   

2.
Several signalling pathways have been defined by studies of genes originally characterised in Drosophila. However, some mammalian signalling systems have so far escaped discovery in the fly. Here, we describe the identification and characterisation of fly homologs for the mammalian vascular endothelial growth factor/platelet derived growth factor (VEGF/PDGF) and the VEGF receptor. The Drosophila factor (DmVEGF-1) gene has two splice variants and is expressed during all stages, the signal distribution during embryogenesis being ubiquitous. The receptor (DmVEGFR) gene has several splice variants; the variations affecting only the extracellular domain. The most prominent form is expressed in cells of the embryonic haematopoietic cell lineage, starting in the mesodermal area of the head around stage 10 of embryogenesis. Expression persists in hemocytes as embryonic development proceeds and the cells migrate posteriorly. In a fly strain carrying a deletion uncovering the DmVEGFR gene, hemocytes are still present, but their migration is hampered and the hemocytes remain mainly in the anterior end close to their origin. These data suggest that the VEGF/PDGF signalling system may regulate the migration of the Drosophila embryonic haemocyte precursor cells.  相似文献   

3.
Notch pathway genes are expressed in mammalian ovarian follicles.   总被引:1,自引:0,他引:1  
Folliculogenesis is the process of development of ovarian follicles that ultimately results in the release of fertilizable oocytes at ovulation. This is a complex program that involves the proliferation and differentiation of granulosa cells. Granulosa cells are necessary for follicle growth and support the oocyte during folliculogenesis. Genes that regulate the proliferation and differentiation of granulosa cells are beginning to be elucidated. In this study, the expression patterns of Notch receptor genes and their ligands, which have been shown to regulate cell-fate decisions in many systems during development, were examined in the mammalian ovary. In situ hybridization data showed that Notch2, Notch3, and Jagged2 were expressed in an overlapping pattern in the granulosa cells of developing follicles. Jagged1 was expressed in oocytes exclusively. Downstream target genes of Notch also were expressed in granulosa cells. These data implicate the Notch signaling pathway in the regulation of mammalian folliculogenesis.  相似文献   

4.
5.
6.
7.
beta-Amyloid precursor protein binding protein 1 (APP-BP1) was previously identified based on its binding to the carboxyl terminal of beta-amyloid precursor protein. In this report, we have discovered that a mutation of dAPP-BP1 (Drosophila ortholog of APP-BP1) hinders tissue development, causes apoptosis in imaginal disc cells, and blocks the NEDD8 conjugation pathway. We show that dAPP-BP1 specifically binds the intracellular domain of APP-like protein (APPL). The dAPP-BP1 mutation partially suppresses the abnormal macrochaete phenotype of Appl(d), while overexpression of dAPP-BP1 causes abnormal macrochaetes. When APPL is overexpressed, the normal bristle pattern in the fly thorax is disturbed and apoptosis is induced in wing imaginal discs. APPL overexpression phenotypes are enhanced by reducing the level of dAPP-BP1. APPL overexpression is shown to inhibit the NEDD8 conjugation pathway. APPL-induced apoptosis is rescued by overexpression of dAPP-BP1. Our data suggest that APPL and dAPP-BP1 interact antagonistically during Drosophila development.  相似文献   

8.
9.
10.
A dual function of the Notch gene in Drosophila sensillum development   总被引:7,自引:0,他引:7  
We have investigated the function of the neurogenic gene Notch (N) during development of the adult sensilla of Drosophila. Heat pulses were applied to flies carrying the temperature-sensitive Notch allele Nts1 at different larval and pupal stages. We can show that the reduction of Notch+ function during a short interval prior to the onset of sensillum precursor division, resulting from a heat pulse between 0 and 14 hr after puparium formation (apf), leads to an increase in microchaete precursors at the expense of epidermal cells. The structure and cellular composition of the sensilla produced by these supernumerary precursors are normal. Later heat pulses which include the interval immediately after sensillum precursor division (14-20 hr apf) lead, among the progeny of the sensillum precursors, to a hyperplasia of sensory neurons, at the expense of accessory cells. The resulting "sensilla" consist of neurons only and lack the external cuticular structures (i.e., shaft, socket). These results demonstrate that similar mechanisms both of which involve the function of the Notch gene may be operating to sort out (premitotic) sensillum precursors from epidermal precursors and (postmitotic) sensory neurons from accessory cells. They further show that in postmitotic sensillum cells the differentiative fate is not yet irreversibly fixed, but presumably requires cell-cell interaction to become established.  相似文献   

11.
Vasa homolog genes in mammalian germ cell development   总被引:12,自引:0,他引:12  
Many vasa homologue genes to Drosophila vasa have been isolated in various animal species. They provide specific molecular probes to analyze the establishment and the differentiation of germ cell lineage. In mammals, the expression of VASA protein becomes detectable in PGCs at the late migrating stage. Interestingly, during spermatogenesis the intracellular localization of VASA protein is closely associated with the chromatoid body.  相似文献   

12.
13.
The Caenorhabditis elegans sel-10 protein is structurally similar to E3 ubiquitin ligases and is a negative regulator of Notch (lin-12) and presenilin signaling. In this report, we characterize the mammalian Sel-10 homolog (mSel-10) and analyze its effects on Notch signaling. We find that mSel-10 localizes to the cell nucleus, and that it physically interacts with the Notch 1 intracellular domain (IC) and reduces Notch 1 IC-mediated activation of the HES 1 promoter. Notch 1 IC is ubiquitinated by mSel-10, and ubiquitination requires the presence of the most carboxyl-terminal region of the Notch IC, including the PEST domain. In the presence of the proteasome inhibitor MG132, the amount of Notch 1 IC and its level of ubiquitination are increased. Interestingly, this accumulation of Notch 1 IC in the presence of MG132 is accompanied by decreased activation of the HES 1 promoter, suggesting that ubiquitinated Notch 1 IC is a less potent transactivator. Finally, we show that mSel-10 itself is ubiquitinated and degraded by the proteasome. In conclusion, these data reveal the importance of ubiquitination and proteasome-mediated degradation for the activity and turnover of Notch ICs, and demonstrate that mSel-10 plays a key role in this process.  相似文献   

14.
15.
16.
17.
Notch2: a second mammalian Notch gene.   总被引:28,自引:0,他引:28  
Notch is a cell surface receptor that mediates a wide variety of cellular interactions that specify cell fate during Drosophila development. Recently, homologs of Drosophila Notch have been isolated from Xenopus, human and rat, and the expression patterns of these vertebrate proteins suggest that they may be functionally analogous to their Drosophila counterpart. We have now identified a second rat gene that exhibits substantial nucleic and amino acid sequence identity to Drosophila Notch. This gene, designated Notch2, encodes a protein that contains all the structural motifs characteristic of a Notch protein. Thus, mammals differ from Drosophila in having more than one Notch gene. Northern and in situ hybridisation analyses in the developing and adult rat identify distinct spatial and temporal patterns of expression for Notch1 and Notch2, indicating that these genes are not redundant. These results suggest that the great diversity of cell-fate decisions regulated by Notch in Drosophila may be further expanded in vertebrates by the activation of distinct Notch proteins.  相似文献   

18.
19.
20.
A wee1 homolog, wee-1.1, is expressed in both a temporally and spatially restricted pattern during early Caenorhabditis elegans embryogenesis, and is undetectable throughout the remainder of embryogenesis. The wee-1.1 message appears to be zygotically expressed in the somatic founder cell E of the 12-cell embryo. This expression disappears when the E blastomere divides for the first time. The wee-1.1 message then appears transiently in the nuclei of the eight great-granddaughter cells of the AB somatic founder cell, just before these cells divide in the 16-cell embryo. Following this division, the wee-1.1 mRNA is no longer detectable throughout the remainder of embryogenesis. The expression of wee-1.1 in the E blastomere and in the AB progeny appears to be restricted to nuclei in prophase and metaphase of the cell cycle. Analysis of the wee-1.1 mRNA expression pattern in maternal-effect lethal mutants suggests that this expression pattern is restricted to cells of the E and AB fates in the early embryo. This mRNA expression pattern is restricted to a 10-15-min span of embryonic development and may be regulating the timing of crucial cell divisions at this early stage of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号